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Abstract In this paper, we prove the breakdown of the two-dimensional stable and
unstable manifolds associated to two saddle-focus points which appear in the unfold-
ings of the Hopf-zero singularity. The method consists in obtaining an asymptotic
formula for the difference between these manifolds which turns to be exponentially
small respect to the unfolding parameter. The formula obtained is explicit but depends
on the so-called Stokes constants, which arise in the study of the original vector field
and which corresponds to the so-called inner equation in singular perturbation theory.

Keywords Exponentially small splitting · Hopf-zero bifurcation · Inner equation ·
Stokes constant
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1 Introduction and Main Result

Thepresentwork is the natural continuation ofBaldomá et al. (2016). Below,webriefly
explain the setting of the problem we deal with and the notation we shall follow. For
a more complete introduction, we refer the reader to Baldomá et al. (2016).

TheHopf-zero singularity is a vector field X∗ inR
3 having the origin as a fixed point

with linear part having a zero eigenvalue and apair of purely imaginary eigenvalues.We
consider versal analytic unfoldings with two parameters, Xμ,ν such that X0,0 = X∗. In
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the case of volume preserving unfoldings, which we will call conservative unfoldings,
we consider one parameter families. Performing the normal form procedure up to
order two, system Xμ,ν becomes

dx̄

dt̄
= x̄ (ν − β1 z̄) + ȳ

(
α∗ + α1ν + α2μ + α3 z̄

)+ O3(x̄, ȳ, z̄, μ, ν)

dȳ

dt̄
= −x̄

(
α∗ + α1ν + α2μ + α3 z̄

)+ ȳ (ν − β1 z̄) + O3(x̄, ȳ, z̄, μ, ν)

dz̄

dt̄
= −μ + z̄2 + γ2(x̄

2 + ȳ2) + γ3μ
2 + γ4ν

2 + γ5μν + O3(x̄, ȳ, z̄, μ, ν).

(1)

We note that the conservative case is ν = 0, β1 = 1 and imposing that the higher order
terms are divergence free. The dynamics of this system has been studied by several
authors and it is explained in Baldomá et al. (2016).

The singularities under consideration are the singularities satisfying that

β1 > 0, γ2 > 0,

which, from now on, wewill call HZ∗, following the notation introduced inDumortier
et al. (2013). In this paper, we focus in both i) the conservative case and ii) the general
case when the parameters μ, ν satisfy: |ν| = O(μ). In these two cases, the dynamics
are not yet completely understood. For our purposes,we emphasize that this systemhas
two saddle-focus points S̄±(μ, ν) whose one-dimensional unstable/stable manifolds
donot coincide,Baldomáet al. (2013). The goal of this paper is to determine the relative
position of the two-dimensional invariant manifolds of these points, see Fig. 1a.

Following Baldomá et al. (2016), we denote by X2
μ,ν the normal form truncated at

order two of these unfoldings, that is, system (1) neglecting the terms of degree equal
or higher than three. In fact, we also neglect the second-order terms that only depend
on the parameters μ, ν which we call P2

μ,ν . We decompose

Xμ,ν = X2
μ,ν + P2

μ,ν + F2
μ,ν

and we introduce the parameter q as:

Xμ,ν = X2
μ,ν + (

√
μ)q(P2

μ,ν + F2
μ,ν). (2)

The artificial parameter q determines whether we are in the non-generic (q > 0) or
in the generic (q = 0) setting. We call regular case the case q > 0. In Baldomá et al.
(2016), an asymptotic formula for the distance between the two-dimensional invariant
manifolds was obtained for q > 0. In the case q = 0, which we call the singular case,
the results given in Baldomá et al. (2016) only provide upper bounds.

In the present work, we consider the singular case and prove the asymptotic formula
for the distance between the two-dimensional invariant manifolds of generic analytic
unfoldings of the Hopf-zero singularity, in both the conservative and the general case
for values of the parametersμ, ν satisfying that ν = O(μ). In the conservative case,we
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will prove that this distance isO
(
μ−āe

− a√
μ

)
for some constants a, ā > 0. Therefore,

the distance is exponentially small. In the general case, we will prove the existence
of a curve �∗ and a wedge-shaped domain around it, Wu,s (see Fig. 2) such that if
(μ, ν) ∈ Wu,s, the distance is exponentially small. In particular, our results prove, for
generic unfoldings, the existence of transversal heteroclinic orbits in the conservative
and, in the general case, when (μ, ν) ∈ Wu,s. As wewidely explain in the introduction
of Baldomá et al. (2016), these results are a necessary step in the proof of the existence
of Shilnikov bifurcations in the analytic unfoldings of the Hopf-zero singularity.

We use previous results in Baldomá et al. (2016), and we introduce the so-called
inner equation, a parameterless equation which is associated with the original vector
field HZ∗. It turns out that the difference between two suitable solutions of this
equation approximates the distance of our invariantmanifolds. Previousworks proving
exponentially small phenomena had to deal with inner equations. In Gelfreich (1997),
the corresponding inner equations were studied for several periodically perturbed
second-order equations. In Gelfreich and Sauzin (2001) and Martín et al. (2011),
there are rigorous studies of the inner equation of the Hénon map and the McMillan
map using Resurgence Theory (Écalle 1981a, b). In Olivé et al. (2003), there is a
rigorous analysis of the inner equation for the Hamilton–Jacobi equation associated to
a pendulum equation with a certain perturbation term, also using Resurgence Theory.
Besides, there are other works where functional analysis techniques are used to deal
with more general cases. Baldomá (2006) is the only result which deals with the inner
equation associated to a very general type of polynomial Hamiltonian systems with a
fast perturbation. In Baldomá and Martín (2012), the inner equation for generalized
standard maps is studied. In Baldomá and Seara (2008), the authors study the inner
equation associated to the splitting of the one-dimensional heteroclinic connection of
the Hopf-zero singularity in the conservative case. The paper Gelfreich and Naudot
(2008) studies the inner equation associated to the Bodganov–Takens bifurcation.

Let us now enunciate the main result of this work properly. As in Baldomá et al.
(2016), we write system (1) as:

dx̄

dt̄
= x̄ (ν − β1 z̄) + ȳ (α0 + α1ν + α2μ + α3 z̄) + f̄ (x̄, ȳ, z̄, μ, ν),

dȳ

dt̄
= −x̄ (α0 + α1ν + α2μ + α3 z̄) + ȳ (ν − β1 z̄) + ḡ(x̄, ȳ, z̄, μ, ν), (3)

dz̄

dt
= −μ + z̄2 + γ2(x̄

2 + ȳ2) + h̄(x̄, ȳ, z̄, μ, ν)

with f̄ (x̄, ȳ, z̄, μ, ν), ḡ(x̄, ȳ, z̄, μ, ν) = O3(x̄, ȳ, z̄, μ, ν) and

h̄(x̄, ȳ, z̄, μ, ν) = γ3μ
2 + γ4ν

2 + γ5μν + O3(x̄, ȳ, z̄, μ, ν).

We consider the singularities HZ∗ [following the notation in Dumortier et al. (2013)]
with β1, γ2 > 0 and we compute the distance Du,s(u, θ, μ, ν) between the two-
dimensional invariant manifolds, see Fig. 1.

The case studied in Baldomá et al. (2016) consists in considering, for q ≥ 0,
(
√

μ)q( f̄ , ḡ, h̄) instead of ( f̄ , ḡ, h̄) as perturbation terms.
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(a) (b)

Fig. 1 The distance between the invariant manifolds. a The two-dimensional invariant manifolds of
S̄+(μ, ν) and S̄−(μ, ν) until they reach the plane z̄ = 0. b The intersection between the invariant manifolds
and the plane z̄ = 0, and the distance D̄u,s(θ, μ, ν) between them

The main result in this work is:

Theorem 1.1 Consider aHopf-zero singularity H Z∗ and Xμ,ν as in (3), withβ1, γ2 >

0. There exists μ0 > 0 such that if 0 < μ < μ0 and |ν| < β1
√

μ, the vector field
Xμ,ν has two equilibrium points S̄±(μ, ν) of saddle-focus type of the form

S̄±(μ, ν) = (0, 0,±√
μ) + O(μ2 + ν2)

1
2 .

In addition, S̄+ has a two-dimensional stable manifold and S̄− has a two-dimensional
unstable manifold.

For any u ∈ R and θ ∈ [0, 2π ], let D̄u,s(u, θ, μ, ν) (D̄u,s(u, θ, μ) in the con-
servative case) be the distance between the two-dimensional unstable manifold of
S̄−(μ, ν) and the two-dimensional stable manifold of S̄+(μ, ν) when they meet the
plane z̄ = √

μ tanh(β1u) along the ray of argument θ in the x̄ − ȳ plane.
Then, there exist constants C∗

1 , C∗
2 , L0 and a function L(u) in such a way that, given

T0 > 0, for all u ∈ [−T0, T0] and θ ∈ S
1, introducing the function:

ϑ̄(u, μ) = α0u√
μ

+ 1

β1
(α3 + α0L0)

[
log cosh(β1u) − 1

2
logμ

]
+ α0L(u),

the following holds:

1. In the conservative case, which corresponds to β1 = 1 and ν = 0, as μ → 0+,

D̄u,s(u, θ, μ) =
√

γ2

2

e
− α0π

2
√

μ

(
√

μ)3
cosh3(u)

[
C∗
1 cos

(
θ + ϑ̄(u, μ)

)

+ C∗
2 sin

(
θ + ϑ̄(u, μ)

)
+ O

(
1

| log(μ)|
)]

.
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2. In the general case, given σ ∗ > 0, for μ → 0+ and |ν| ≤ σ ∗μ, there exists
C0 = C0(μ, ν) given by:

C0(μ, ν) = ν I + μJ + O
(
μ3/2

)
(4)

where J , I �= 0 are constants given in (92) and (90) ofBaldomá et al. (2016), such
that:

D̄u,s(u, θ, μ, ν) =
√

γ2

β1 + 1
cosh

1+ 2
β1 (β1u)

{
C0
(
1 + O(

√
μ,

ν√
μ

)

)

+ e
− α0π

2β1
√

μ

(
√

μ)
2
β1

+1

[
C∗
1 cos

(
θ + ϑ̄(u, μ)

)

+ C∗
2 sin

(
θ + ϑ̄(u, μ)

)
+ O

(
1

| log(μ)|
)]}

.

In addition, there exists a curve

�∗ =
{
(μ, ν) ∈ U : ν = ν0∗(

√
μ) = − J

I
μ + O(μ3/2)

}

such that for all 0 < μ < μ0 one has:

C0 = C0(μ, ν0∗(
√

μ)) = 0.

Remark 1.2 The constants C∗
i , which are usually called Stokes constants (see Stokes

1864, 1902), depend on the full jet of the original vector field HZ∗ and, up to now,
they can only be computed numerically. This computation is not trivial, and is not
the goal of the present paper. For the one-dimensional case, it has been done for
particular examples in Larreal and Seara (2009). A detailed and accurate numerical
computation of the distance in the one- and two-dimensional cases in many examples
(in conservative and non-conservative settings) has been done in Dumortier et al.
(2013).

On the contrary, the constant L0 and the function L(u) can be computed explicitly
and only depend on the terms of order three of f̄ , ḡ and h̄ (see Remark 5.7 in Baldomá
et al. 2016 for an explicit formula).

Corollary 1.3 Take T0 > 0, and 0 < μ < μ0. Consider the curve �∗ given in
Theorem 1.1. Then, there exists a wedge-shaped domainWu,s in the parameter plane
around this curve (see Fig. 2) such that, for (μ, ν) ∈ Wu,s, and for fixed u ∈ [−T0, T0],
the function D̄u,s(u, θ, μ) is exponentially small and has two simple zeros which give
rise to two transversal heteroclinic orbits between the points S̄±(μ, ν). Moreover, for
(μ, ν) /∈ Wu,s, D̄u,s(u, θ, μ) has no zeros and therefore the two-dimensional stable
and unstable manifolds of S̄±(μ, ν) do not intersect.
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Fig. 2 The curve �∗ and the wedge-shaped domain Wu,s around it. This domain separates the values of
the parameters where the unfolding Xμ,ν has transversal heteroclinic orbits

In spite of Remark 1.2, generically the constants C∗
1 , C∗

2 will be nonzero for generic
singularities HZ∗.

Proposition 1.4 Consider the set HZ∗ of the Hopf-zero singularities H Z∗, with
β1, γ2 > 0. Then,

1. Given H Z∗ ∈ HZ∗ and Xμ,ν , an analytic unfolding of H Z∗ with |ν| < β1
√

μ,
the constant C∗ := C∗

1 + iC∗
2 , with C∗

1 , C∗
2 given by Theorem 2.16, only depends on

the chosen singularity H Z∗ ∈ HZ∗
2. Let A∗ be the subset of HZ∗ such that, if H Z∗ ∈ A, then the constant C �= 0.

Then A∗ is open and dense inHZ∗ with the supremum norm.

The main ideas of the proof of Theorem 1.1 are given in Sect. 2. Sections 3–5 are
devoted to present the technical proofs of the results mentioned in Sect. 2.

2 Set Up and Heuristics of the Proof of Theorem 1.1

The main goal in this section is to present the strategy to prove Theorem 1.1. As we
will see its proof is involved and requires deep tools in functional analysis as well as
complex matching techniques which will be explained in detail.

We begin in Sect. 2.1 by presenting the adequate setting to deal with and the precise
statement of some of the results proven in Baldomá et al. (2016) that, as we said in
Sect. 1, still hold true in the current setting. We also roughly present the strategy we
will follow to prove Theorem 1.1. Later, in Sect. 2.2, we derive and study the inner
equation, and we present the way to use this equation to prove Theorem 1.1. This
strategy is developed with more details in Sects. 2.3 and 2.4.

As a general rule in this work, we will omit the dependence of the functions with
respect to their variables and parameters whenever this dependence is clear. Moreover,
we will denote by K any constant independent of the parameters, the value of which
is not fixed throughout the paper.
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2.1 Preliminary Considerations and Previous Results

This section is divided in three subsections which summarize the setting and results
introduced in Baldomá et al. (2016). In Sect. 2.1.1, we briefly explain the appropriate
scalings and changes of variables we perform. After this, in Sect. 2.1.2, we study
what we consider the unperturbed system and finally, in Sect. 2.1.3, we present the
results proven in Baldomá et al. (2016) we will use along this work. They are related
to the existence and properties of global parameterizations of the invariant unstable
and stable manifolds of the critical points in the so-called outer domains (see (14)).

2.1.1 Scalings and Symplectic Polar Variables

We scale system (3) as in Baldomá et al. (2016), see also Baldomá et al. (2013). Indeed,
we define the new parameters p, δ, σ and rename the coefficients γ2, α3, β1 as:

p = q − 2, δ = √
μ, σ = δ−1ν, b = γ2, c = α3, d = β1.

We also introduce the constant h3 of h̄ given by

h̄(0, 0, z̄, 0, 0) = h3 z̄
3 + O(z̄4).

With the new variables

x = δ−1 x̄, y = δ−1 ȳ, z = δ−1 z̄ + δ p+3h3/2, t = δt̄,

system (3) becomes:

dx

dt
= x (σ − dz) +

(
α(δ2, δσ )

δ
+ cz

)
y + δ−2 f (δx, δy, δz, δ, δσ ),

dy

dt
= −

(
α(δ2, δσ )

δ
+ cz

)
x + y (σ − dz) + δ−2g(δx, δy, δz, δ, δσ ),

dz

dt
= −1 + b(x2 + y2) + z2 + δ−2h(δx, δy, δz, δ, δσ ),

(5)

whereα(δ2, δσ ) = α0+α1δσ+α2δ
2 withα0 �= 0 and f, g and h are the corresponding

ones to f̄ , ḡ and h̄. To avoid a cumbersome notation, we have written

f (δx, δy, δz, δ, δσ ) = f̄ (δx, δy, δz − δ2h3/2, δ
2, δσ ). (6)

The same holds for g, h.
To shorten the notation, we write system (5) as

dζ

dt
= X (ζ, δ, σ ) = X0(ζ, δ, σ ) + δ−2X1(δζ, δ, δσ ), ζ = (x, y, z). (7)
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Note that X1(δζ, δ, δσ ) = O3(δζ, δ, δσ ). As shown in Baldomá et al. (2013), under
the conditions b, d > 0, |σ | < d and δ > 0, the vector field X defined in (7) has two
critical points S±(δ, σ ) of saddle-focus type of the form:

S±(δ, σ ) = (0, 0,±1) + (O(δ3),O(δ3),O(δ2)
)
.

We consider system (7) in symplectic cylindric coordinates

x = √
2r cos θ, y = √

2r sin θ, z = z, (8)

and we obtain

dr

dt
= 2r(σ − dz) + δ−2F(δr, θ, δz, δ, δσ ),

dθ

dt
= −α

δ
− cz + δ−2G(δr, θ, δz, δ, δσ ),

dz

dt
= −1 + 2br + z2 + δ−2H(δr, θ, δz, δ, δσ ),

(9)

where X1 = (F, G, H) is defined by

X1(δr, θ, δz, δ, δσ ) =
⎛

⎜
⎝

√
2r cos θ

√
2r sin θ 0

− 1√
2r

sin θ 1√
2r

cos θ 0

0 0 1

⎞

⎟
⎠ X1(δζ, δ, δσ ) (10)

with δζ = (δ
√
2r cos θ, δ

√
2r sin θ, δz) and X1 is introduced in (7).

2.1.2 The Unperturbed System

From now, we will call the unperturbed system to system (9) with F = G = H = 0
and σ = 0 (or equivalently system (5) with f = g = h = 0 and σ = 0). In symplectic
cylindric coordinates (8), the unperturbed system is:

dr

dt
= −2dr z,

dθ

dt
= −α

δ
− cz,

dz

dt
= −1 + 2br + z2.

As b > 0, it has a two-dimensional heteroclinic manifold connecting S+(δ, 0) =
(0, 0, 1) and S−(δ, 0) = (0, 0,−1) given by:

{
(r, z) ∈ R

2 : −1 + 2br

d + 1
+ z2 = 0

}
,
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which can be parameterized by the solutions of the unperturbed system:

r = R0(t) := (d + 1)

2b

1

cosh2(dt)
, (11)

θ = 
0(t, θ0) := θ0 − α

δ
t − c

d
log cosh(dt),

z = Z0(t) := tanh(dt), (12)

for t ∈ R and θ0 ∈ [0, 2π).

2.1.3 Previous Results in Baldomá et al. (2016) and Notation

The results in this section deal with the existence of adequate parameterizations of
the invariant manifolds and the quantitative (non-sharp) bounds of them and their
difference in suitable complex domains.

To recover the singular case in the results in Baldomá et al. (2016) take p = q−2 =
−2, see (2).

1. Existence of the invariant manifolds. The critical point S−(δ, σ ) (resp. S+(δ, σ ))
has a two-dimensional unstable (resp. stable) manifold which, in symplectic polar
coordinates, can be written as

r = ru,s(u, θ) = R0(u) + ru,s1 (u, θ), z = Z0(u). (13)

These parameterizations are well defined in Du
κ,β,T × Tω with

Tω = {θ ∈ C/(2πZ) : |Im θ | ≤ ω}

and, given constants κ, T > 0 sufficiently large and 0 < β < π/2,

Du
κ,β,T =

{
u ∈ C : |Im u| ≤ π

2d
− κδ − tan βRe u, Re u ≥ −T

}
, (14)

for the unstable manifold, and Ds
κ,β,T = −Du

κ,β,T , for the stable one. See Fig. 4
where the domain Du

κ,β,T is included.
To avoid cumbersome notations, if there is not danger of confusion, from now on
we will omit the dependence on variables (u, θ).
We introduce some notation used in Baldomá et al. (2016):

X̄1(r) = X1(δ(R0(u) + r), θ, δZ0(u), δ, δσ ), X̄1 = (F,G, H), (15)
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where X1 = (F, G, H) is defined in (10), and the operators, acting on functions
r = r(u, θ),

Lout(r) = (− δ−1α − cZ0(u)
)
∂θr + ∂ur − 2Z0(u)r (16)

Fout(r) = 2σ(R0(u) + r) + δ−2F(r) + δ−2 d + 1

b
Z0(u)H(r)

− δ−2G(r)∂θr −
(
2br + δ−2H(r)

d(1 − Z2
0(u))

)

∂ur. (17)

The result we use is:

Theorem 2.1 (Theorem 2.4 in Baldomá et al. 2016) Consider the PDE:

Lout(ru,s1 ) = Fout(ru,s1 ). (18)

Let σ ∗ > 0 and 0 < β < π/2 any constants. There exist κ∗ ≥ 1 and δ∗ > 0, such
that for all 0 < δ < δ∗, if κ = κ(δ) satisfies:

κ∗δ ≤ κδ ≤ π

8d
, (19)

and |σ | ≤ σ ∗δ, the unstable manifold of S−(δ, σ ) and the stable manifold of S+(δ, σ )

are given, respectively, by:

(√
2ru,s(u, θ) cos θ,

√
2ru,s(u, θ) sin θ, Z0(u)),

where, for (u, θ) ∈ Du,s
κ,β,T × Tω, the functions ru,s can be decomposed as

r = ru,s(u, θ) = R0(u) + ru,s1 (u, θ),

with ru1 and r s1 satisfying the same Eq. (18).
Moreover, there exists M > 0 such that for all (u, θ) ∈ Du,s

κ,β,T × Tω:

|ru,s1 (u, θ)| ≤ Mδ| cosh(du)|−3, |∂uru,s1 (u, θ)| ≤ Mδ| cosh(du)|−4,

|∂θr
u,s
1 (u, θ)| ≤ Mδ2| cosh(du)|−4.

2. Difference of parameterizations.With respect to the difference between the param-
eterizations (13), defined in

Dκ,β × Tω := (Du
κ,β,T ∩ Ds

κ,β,T ) × Tω,

we have:
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Theorem 2.2 (Theorem 2.7 in Baldomá et al. 2016) Let |σ | ≤ δσ ∗. The difference
� := ru1 − r s1 can be written as:

�(u, θ) = cosh2/d(du)(1 + P1(u, θ))k̃(ξ(u, θ)),

where k̃(τ ) is a 2π−periodic function and the function ξ is defined as:

ξ(u, θ) = θ + δ−1αu + d−1(c + αL0) log cosh(du) + αL(u) + χ(u, θ), (20)

being L0 ∈ R a constant. The functions P1, L , χ are real analytic functions. In
addition, (ξ(u, θ), θ) is injective in Dκ,β × Tω and:

(a) For all (u, θ) ∈ Dκ,β × Tω:

|L(u)| ≤ M |L ′(u)| ≤ M, |χ(u, θ)| ≤ Mδ

| cosh(du)| , (21)

for some constant M. Moreover, L(0) = 0 and L(u) can be analytically extended
to D0,β and the limit limu→iπ/(2d), u∈D0,β L(u) exists.

(b) There exists a constant M such that for all (u, θ) ∈ Dκ,β × Tω:

|P1(u, θ)| ≤ Mδ

| cosh(du)| . (22)

As a straightforward consequence of this result one has:

�(u, θ) = cosh2/d(du)(1 + P1(u, θ))
∑

l∈Z
ϒ [l]eilξ(u,θ), (23)

where P1 and ξ are given in Theorem 2.2 and ϒ [l], that are the Fourier coefficients of
the function k̃(τ ), are unknown. Of course, they depend on δ and σ although we do
not write it explicitly.

3. The Fourier coefficients ϒ [l]. Next lemma deals with the exponential smallness of
ϒ [l] when l �= 0:

Lemma 2.3 (Lemma 2.11 in Baldomá et al. 2016) Let ϒ [l], l ∈ Z, l �= 0, be the
coefficients appearing in expression (23) of �. Take κ as in Theorem 2.1. There exists
a constant M, independent of κ , such that:

∣∣∣ϒ [±1]
∣∣∣ ≤ M

δ−2−2/d

κ3+2/d
e− απ

2dδ +ακ ,

∣∣∣ϒ [l]
∣∣∣ ≤ M

δ−2−2/d

κ3+2/d
e− απ

2dδ
3|l|
4 , |l| ≥ 2.

Let us explain how we can get exponentially small bounds for ϒ [l] when l �= 0
from expression (23) in the easiest case: when ξ(u, θ) = θ + δ−1αu, that is to say the
constants c = L0 = 0 and the functions L ≡ χ ≡ 0. Indeed, in this case

∑

l∈Z
ϒ [l]eilδ−1αueilθ = �(u, θ)

cosh2/d(du)(1 + P1(u, θ))
.
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Therefore, ϒ [l]eilδ−1αu are the Fourier coefficients of a 2π -periodic in θ function and
we have that, for all u ∈ Dκ,β (recall that �(u, θ) is defined on Dκ,β × Tω):

ϒ [l] = e−ilδ−1αu 1

2π

∫ 2π

0

�(u, θ)

cosh2/d(du)(1 + P1(u, θ))
e−ilθ dθ.

Since this equality holds true for any value of u ∈ Dκ,β , we take u = u+ := π/(2δ)−κ

when l > 0 and conversely u = u− := −π/(2δ)+κ when l < 0. Using Theorem 2.1,
we have that

|�(u±, θ)| ≤ |ru1 (u±, θ)| + |r s1(u±, θ)| ≤ Mδ−2κ−3.

Therefore, using Theorem 2.2 to bound P1, one has that

|ϒ [l]| ≤ K δ−2−2/dκ−3−2/de−|l|( απ
2dδ +ακ)

which is an exponentially small bound for ϒ [l] when l �= 0.
Of course, this is an extremely easy case, but it shows that it is crucial to have

quantitative bounds of the behavior of the parameterization of the invariant manifolds
at points O(δ)−close to the singularities ±iπ/(2d).

To finish, we present the following result which deals with the average ϒ [0].
Theorem 2.4 (Theorem 2.9 in Baldomá et al. 2016) Let ϒ [0] be the average of the
function k̃(τ ) appearing in Theorem 2.2.

(a) In the conservative case, for all 0 < δ < δ0 one has ϒ [0] = 0.
(b) In the general case, for all 0 < δ < δ0 and |σ | ≤ δσ ∗

ϒ [0] = σ I + δ J̄ (δ, σ ), (24)

being I �= 0 independent of δ and σ and J̄ = J +O(δ) given in (90) and (91) of
Baldomá et al. (2016), respectively.
In addition, there exists a curve

σ = σ 0∗ (δ) = − J

I
δ + O(δ2)

such that for all 0 < δ < δ0 one has:

ϒ [0] = ϒ [0](δ, σ 0∗ (δ)) = 0.

Moreover, given constants a1, a2 ∈ R and a3 > 0, there exists a curve

σ = σ∗(δ) = σ 0∗ (δ) + O(δa2e− a3π

2dδ ) (25)

such that for all 0 < δ < δ0 one has:

ϒ [0] = ϒ [0](δ, σ∗(δ)) = a1δ
a2e− a3π

2dδ . (26)
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These are the results in Baldomá et al. (2016) we will use along this work. They
(among others) lead to the following result:

Theorem 2.5 (Theorem 2.14 in Baldomá et al. 2016) In the general case take |σ | ≤
δσ ∗. Let ϒ [0] = ϒ [0](σ, δ) be the constant provided by Theorem 2.4. In the conserva-
tive case recall that ϒ [0] = 0. Let ϑ(u, δ) = δ−1αu + cd−1 [log cosh(du) − log δ

]
.

There exist constants C1, C2 such that, given T0 > 0, for all u ∈ [−T0, T0] and
θ ∈ S

1

�(u, θ) = cosh
2
d (du)ϒ [0](1 + O(δ)

)

+ δ−2− 2
d cosh

2
d (du)e− απ

2dδ

[
C1 cos

(
θ + ϑ(u, δ) − αd−1L0 log δ

)

+ C2 sin
(
θ + ϑ(u, δ) − αd−1L0 log δ

)
+ O(1)

]
,

where we recall that d = 1 in the conservative case.

This result is not an asymptotic formula for the difference in the singular case, but it
provides a (sharp) upper bound for �. Assuming the results in Theorems 2.1, 2.2 and
2.4 and Lemma 2.3, its proof consists in finding �0, a good approximation of � by
means of suitable approximations of ru,s1 on domains containing points O(δ)−close
to the singularities, at u = ±iπ/(2d), of the parameterization of the heteroclinic
connection � in (11), (12). Roughly speaking, �0 comes from a Poincaré–Melnikov
perturbation theory and only gives an asymptotic formula in the regular case, that is,
when p = q − 2 > −2.

Let us explain why the classical perturbation theory does not work in the singular
(p = −2) case. Indeed, the approximations of ru,s1 , which we called ru,s10 in Baldomá
et al. (2016), satisfy that (see Theorem 2.4 in Baldomá et al. 2016):

(
R0(u)

)−1
ru,s10 (u, θ)=O(δ p+2),

(
R0(u)

)−1
(ru,s1 (u, θ) − ru,s10 (u, θ))=O(δ2(p+2)).

Therefore, for p = −2 they are ofO(1)when u = ±iπ/(2d)+O(δ) and consequently
ru,s10 are not good approximations (in the relative error sense) of the parameterizations
ru,s1 anymore. In this paper, we look for suitable approximations of ru,s1 (u, θ) when u
is O(δ) close to the singularities and p = −2 by means of the inner equation which
is introduced, and deeply studied, in the following section.

In fact, since we are in the real analytic setting, we only need to look for good
approximations for ru,s1 (u, θ) when u is close to the singularity iπ/(2d). From now
on, we will restrict ourselves to these values of u.

To finish this section, we present the strategy we will follow from now on to prove
Theorem 1.1:

1. In Sect. 2.2, we deal with the inner equation. First we derive it, through suitable
changes of variables (u, θ) → (s, θ). After that we find two particular solutions of
the inner equation which we call ψu

in(s, θ) and ψ s
in(s, θ), satisfying some asymp-

totic conditions. Finally, we shall find an asymptotic formula for their difference
�ψin(s, θ) := ψu

in(s, θ) − ψ s
in(s, θ).
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2. In Sect. 2.3, we shall see that in suitable complex domains and after appropriate
scaling and changes of variables, ψu

in(s, θ) and ψ s
in(s, θ) are, respectively, good

approximations of the functions ru1 (u, θ) and r s1(u, θ) defined in Theorem 2.1.
3. Finally, in Sect. 2.4, using the previous results, one can find an asymptotic formula

of �(u, θ) in terms of �ψin(s, θ).

From now on, in the general case, we assume that |σ | ≤ δσ∗.

2.2 The Inner Equation

The inner equation, Eq. (39), is an equation independent of δ and σ , which has the
dominant quantitative behavior of the partial differential equation (18) when u isO(δ)

close to the singularity iπ/(2d). In Sect. 2.2.1, we explain how to derive it. Afterward,
in Sect. 2.2.2, we deal with the existence of suitable solutions, ψ

u,s
in of this inner

equation, and finally, in Sect. 2.2.3, we study the form of the difference between them.

2.2.1 Derivation of the Inner Equation

We consider the following change of variables:

s = s(u) = 1

δZ0(u)
, u = u(s) = Z−1

0

(
1

δs

)
, (27)

where we recall that Z0(u) = tanh(du).

Remark 2.6 The change (27) is well defined for u belonging to some sufficiently small
neighborhoods of iπ/(2d). For instance, if u ∈ Du,s

κ,β,T and Im u ≥ π/(4d).

The usual inner change of variables would be δs = d
(
u − iπ/(2d)), see Baldomá

(2006), Baldomá et al. (2012). However we notice that, when we are close to iπ/(2d),
we have that

s(u) = d

δ

(
u − iπ

2d

)
+ O

(
(du − iπ/2)3

δ

)

and then, both changes of variables are close to each other close to the singularity
iπ/(2d).

We consider now ru,s(u(s), θ) = R0(u(s)) + ru,s1 (u(s), θ) where ru,s1 are the func-
tions given in Theorem 2.1. It is clear that

R0(u(s)) = (d + 1)

2b

1

cosh2(du(s))
= d + 1

2b

(
1 − 1

δ2s2

)
,

ru,s1 (u(s), θ) = O
(

1

δ2s3

)
.

(28)
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Consequently, it is convenient to introduce, for a function r1 defined either on Du
κ,β,T

or Ds
κ,β,T , the new function:

ψ(s, θ) = δ2r1 (u(s), θ) . (29)

If there is not danger of confusion, we will omit the dependence on variables u, s, θ
assuming that ψ is always evaluated in (s, θ).

Now assume that r1 is a solution ofLout(r1) = Fout(r1), whereLout andFout were
defined in (16) and (17). Thenψ defined by (29) is a solution of the partial differential
equation:

− α∂θψ + d∂sψ − 2s−1ψ = cs−1∂θψ + dδ2s2∂sψ + δ3Fout(δ−2ψ). (30)

We restate Theorem 2.1 in the new variables (s and ψ). Notice that the resulting
functions, ψu,s, are defined in the restricted domain Du

κ,β,T × Tω, with:

Du,s
κ,β,T =

{
s ∈ C : s = s(u) = 1

δZ0(u)
, u ∈ Du,s

κ,β,T ∩
{
Im u ≥ π

4d

}}
. (31)

Theorem 2.7 Consider the functions ru,s1 , given by Theorem 2.1, and define:

ψu,s(s, θ) = δ2ru,s1 (u(s), θ) , (s, θ) ∈ Du,s
κ,β,T × Tω

satisfying (30). There exists M > 0 such that, for (s, θ) ∈ Du,s
κ,β,T × Tω,

|ψu,s(s, θ)| ≤ M

|s|3 , |∂sψu,s(s, θ)| ≤ M

|s|4 , |∂θψ
u,s(s, θ)| ≤ M

|s|4 .

Remark 2.8 To check this result, we use that, |δs| ≤ K if s ∈ Du,s
κ,β,T .

The inner equation is Eq. (30) by taking δ = 0. In order to see that δ3Fout(δ−2ψ)

is well defined for δ = 0, we need to make some computations. Note that, since we
want to apply the results of Theorem 2.7, for |σ | ≤ σ ∗δ, we will also have that σ = 0.
We define

ρ(ψ, s, δ) = δ
√
2(R0(u(s)) + r1(u(s))) =

√
d + 1

b

(−s−2 + δ2
)+ 2ψ. (32)

One of the terms in δ3Fout(δ−2ψ) (see (17)) is δF(δ−2ψ) with F defined by (15).
Let us compute it:

δF(δ−2ψ) = δF(δ(R0(u(s)) + r1(u(s), θ), θ, δZ0(u(s)), δ, δσ )

= ρ(ψ, s, δ)
[
cos θ f (ξ(ψ, s, δ)) + sin θg(ξ(ψ, s, δ))

]

123

Author's personal copy



1504 J Nonlinear Sci (2018) 28:1489–1549

with ξ(ψ, s, δ) = (ρ(ψ, s, δ) cos θ, ρ(ψ, s, δ) sin θ, δZ0(u(s)), δ, δσ ). Note that,
applying the change of variables (27),

ξ(ψ, s, δ) = (ρ(ψ, s, δ) cos θ, ρ(ψ, s, δ) sin θ, s−1, δ, δσ ).

Analogously one can see that defining

F̂(ψ, δ) := δF(δ−2ψ) = ρ(ψ, s, δ)
[
cos θ f (ξ(ψ, s, δ)) + sin θg(ξ(ψ, s, δ))

]

Ĝ(ψ, δ) := δ−1G(δ−2ψ) = 1

ρ(ψ, s, δ)

[
cos θg(ξ(ψ, s, δ)) − sin θ f (ξ(ψ, s, δ))

]

Ĥ(ψ, δ) := H(δ−2ψ) = h(ξ(ψ, s, δ)), (33)

then

δ3Fout(δ−2ψ) = σρ2(ψ, s, δ) + F̂(ψ, δ) + d + 1

b
s−1 Ĥ(ψ, δ)

− Ĝ(ψ, δ)∂θψ + s2
(
2bψ + Ĥ(ψ, δ)

)
∂sψ.

(34)

It is clear then that δ3Fout(δ−2ψ) is well defined for δ = 0. So the inner equation is
well defined.

To finish this section, we define the operators:

L(ψ) = −α∂θψ + d∂sψ − 2s−1ψ, (35)

M(ψ, δ) = cs−1∂θψ + dδ2s2∂sψ + σρ2(ψ, s, δ) + F̂(ψ, δ) + d + 1

b
s−1 Ĥ(ψ, δ)

− Ĝ(ψ, δ)∂θψ + s2
(
2bψ + Ĥ(ψ, δ)

)
∂sψ. (36)

Then Eq. (30), see (34) for the expression of δ3Fout(δ−2ψ), can be written as:

L(ψ) = M(ψ, δ). (37)

The inner equation is obtained by taking δ = 0 in (37):

L(ψin) = M(ψin, 0) (38)

or equivalently:

− α∂θψin + d∂sψin − 2s−1ψin = cs−1∂θψin + F̂(ψin, 0) + d + 1

b
s−1 Ĥ(ψin, 0)

− Ĝ(ψin, 0)∂θψin + s2
(
2bψin + Ĥ(ψin, 0)

)
∂sψin. (39)

123

Author's personal copy



J Nonlinear Sci (2018) 28:1489–1549 1505

Fig. 3 The domainDin,u
β0,κ̄

in the
s plane

Remark 2.9 As it was remarked to the authors by V. Gelfreich, the inner equation does
not depend on the unfolding Xμ,ν but on the initial Hopf-zero singularity HZ∗.

Let us givemore details. Consider system (3), that is Xμ,ν after a order three normal
form procedure.

The first thing one observes is that the inner equation depends on f̄ , ḡ and h̄ through
their values at μ = ν = 0, which corresponds to the normal form of order three of
HZ∗. This is because the inner equation depends on F̂, Ĝ, Ĥ evaluated at δ = 0 and
the relation (6) between f, g, h and f̄ , ḡ, h̄.

Secondly, we perform the change of coordinates (8):

x̄ = √
2R cos θ, ȳ = √

2R sin θ, z̄ = 1

s

to HZ∗. Call the new system Y ∗. When f̄ = ḡ = h̄ = 0 and μ = ν = 0, Y ∗
has a solution parameterizated by R = R̃0(s) = −(1 + β1)/(2γ2s2). Notice that,
by expression (28) of R0(u(s)) and recalling that β1 = d and γ2 = b, R̃0(s) =[
δ2R0(s)

]
|δ=0.

Finally, let

R = −β1 + 1

2γ2s2
+ ϕ(s, θ) = −d + 1

2bs2
+ ϕ(s, θ)

be a solution of Y ∗ parameterizated by (θ, s) with ϕ(s, θ) → 0 as s → ∞. Then ϕ

has to satisfy the inner equation, Eq. (39).

2.2.2 Study of the Inner Equation

First, we introduce the complex domains in which Eq. (38) will be solved. Given
β0, κ̄ > 0, we define (see Fig. 3):

Din,u
β0,κ̄

= {s ∈ C : |Im s| ≥ tan β0Re s + κ̄}, Din,s
β0,κ̄

= −Din,u
β0,κ̄

. (40)
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Fig. 4 The domains Du
κ,β,T

and Din,u
β0,κ̄

with κ̄ = κ/2 in the u
plane

We also define analogous domains to Din,u,s
β0,κ̄

, in terms of the outer variables u:

Din,u
β0,κ̄

=
{
u ∈ C :

∣∣∣Im
(
u − i

π

2d

)∣∣∣ ≥ tan β0Re u + κ̄δ
}

(41)

and Din,s
β0,κ̄

= −Din,u
β0,κ̄

. It is easy to check that taking κ̄ = κ/2, where κ is the parameter
defining the domains Du

κ,β,T introduced in (14), and choosing an adequate T > 0,

then for all 0 < β0, β < π/2 and for δ small enough one has that Du
κ,β,T ⊂ Din,u

β0,κ̄

(see Fig. 4). Analogously, we also have that Ds
κ,β,T ⊂ Din,s

β0,κ̄
.

We will look for particular solutions ψu
in and ψ s

in of Eq. (38) satisfying:

lim
Re s→∓∞ |ψu,s

in (s, θ)| → 0, (s, θ) ∈ Din,u,s
β0,κ̄

× Tω, (42)

where we take the sign − for u and + for s. We will find these solutions by means of
a suitable right inverse of the operator L defined in (35). More precisely, assume G is
such that L ◦ G = Id. If ψin satisfies the implicit equation:

ψin = G(M(ψin, 0)), (43)

then clearly ψin is a solution of Eq. (38). In other words, G allows us to write (38) as
the fixed point equation, Eq. (43). We now introduce the right inverse used in each
case: Gu,s, which will allow us to prove the existence of the functions ψ

u,s
in satisfying

(42). We shall refer to each case as the “unstable” one and the “stable” one because
we shall see, later on in Theorem 2.13, that each one approximates, respectively, the
unstable or stable manifold (more precisely, ψu and ψ s defined in Theorem 2.7) in
some bounded subdomains of Din,u

β0,κ̄
and Din,s

β0,κ̄
, respectively.
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Given a function φ(s, θ), 2π−periodic in θ , we define Gu,s as:

G∗(φ)(s, θ) =
∑

l∈Z
G∗[l]

(φ)(s)eilθ , ∗ = u, s (44)

where the Fourier coefficients G∗[l](φ) are defined as:

G∗[l]
(φ)(s) = s

2
d

∫ s

∓∞
e− ilα

d (w−s)

w
2
d

φ[l](w)dw, ∗ = u, s

where, we take −∞ for the unstable case and +∞ for the stable one. Here φ[l] stands
for the l−th Fourier coefficient ofφ, and

∫ s
∓∞ means the integral over any path included

in Din,∗
β0,κ̄

such that Re s → ∓∞.
One can easily check that:

L ◦ Gu = L ◦ Gs = Id. (45)

The following theorem states the existence of both functions ψu
in and ψ s

in. Its proof
can be found in Sect. 4.1.

Theorem 2.10 Let β0 > 0 and κ̄ be large enough. Then Eq. (38) has two solutions
ψu
in and ψ s

in, defined, respectively, in Din,u
β0,κ̄

and Din,s
β0,κ̄

, such that there exists M > 0:

|ψu,s
in (s, θ)| ≤ M

|s|3 , |∂sψu,s
in (s, θ)| ≤ M

|s|4 , |∂θψ
u,s
in (s, θ)| ≤ M

|s|4 .

for all (s, θ) ∈ Din,u,s
β0,κ̄

× Tω. Moreover:

|ψu,s
in (s, θ) − Gu,s(M(0, 0))(s, θ)| ≤ M

|s|4 , (s, θ) ∈ Din,u,s
β0,κ̄

× Tω.

2.2.3 Study of the Difference �ψin = ψu
in − ψ s

in

Once the existence of these two particular solutions of the inner equation, Eq. (38),ψu
in

and ψ s
in, is established, one can look for an asymptotic expression of their difference

�ψin = ψu
in − ψ s

in. We will study this difference in Eβ0,κ̄ × Tω, where Eβ0,κ̄ is the
domain (see Fig. 5):

Eβ0,κ̄ = Din,u
β0,κ̄

∩ Din,s
β0,κ̄

∩ {s ∈ C : Im s < 0}.
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Fig. 5 The domain Eβ0,κ̄

Subtracting Eq. (39) forψu
in andψ s

in and using the mean value theorem, one obtains
a linear equation for �ψin of the following form:

−α∂θ�ψin + d∂s�ψin − 2s−1�ψin

= a1(s, θ)�ψin + a2(s, θ)∂s�ψin + (cs−1 + a3(s, θ))∂θ�ψin, (46)

for certain “small” (as |s| → ∞) functions a1, a2 and a3, which we will specify in
Sect. 4.2. Of course, ai , i = 1, 2, 3, depend on ψu

in and ψ s
in, which now are known

functions. Since �ψin is a solution of (46), we first study the form that all solutions
of this equation have. Next we give the main ideas of how this can be done, which
basically are the same as in Section 2.4 in Baldomá et al. (2016) .

Let P in be a particular solution of (46) such that P in(s, θ) �= 0 for (s, θ) ∈ Eβ0,κ̄ ×
Tω. Then, every solution of (46) can be written as:

�ψin(s, θ) = P in(s, θ)kin(s, θ),

where kin(s, θ) is a solution of the homogeneous equation:

− α∂θk
in + d∂sk

in = a2(s, θ)∂sk
in + (cs−1 + a3(s, θ))∂θk

in. (47)

First let us describe how we can find a suitable particular solution P in of Eq. (46).
Since the functions a1, a2 and a3 are “small” and cs−1 is also small if we take |s|
sufficiently large, Eq. (46) can be regarded as a small perturbation of:

−α∂θ�ψin + d∂s�ψin − 2s−1�ψin = 0.

This equation has a trivial solution given by P in
0 (s, θ) = s2/d. Thus, we will look for

a solution of the form P in(s, θ) = s2/d(1 + P in
1 (s, θ)) where P in

1 will be a “small”
function. Note that, being P in

1 small, we will ensure that P in(s, θ) �= 0 for (s, θ) ∈
Eβ0,κ̄ × Tω. The rigorous statement of this result can be found in Proposition 4.8 of
Sect. 4.2.
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Now we shall sketch the study of Eq. (47). In fact, equations of the form (47) have
been studied in previous works. One of its main features is that if ξ(s, θ) is a solution
of (47) such that (ξ(s, θ), θ) is injective in Eβ0,κ̄ × Tω, then any solution kin(s, θ) of
this equation can be written as:

kin(s, θ) = k̃in(ξ(s, θ)),

for some function k̃in(τ ) which has to be 2π -periodic in τ . To find ξ , one could
proceed as we did with P in. Indeed, since the functions a2(s, θ) and cs−1 + a3(s, θ)

are “small”, one could derive that the dominant part of Eq. (47) is given by:

− α∂θk
in + d∂sk

in = 0. (48)

A trivial solution of (48) is given by: ξ0(s, θ) = θ + d−1αs, and thus we could expect
to find a suitable solution of (47) given by ξ = ξ0 + ξ1, where ξ1 is supposed to be a
“small” function.

However, as we shall see in Sect. 4.2, this is not quite accurate. Nevertheless, to
some extent it summarizes the underlying idea of the proof. In fact, we will see that
the dominant part of Eq. (47) is:

− α∂θk
in + d∂sk

in = dL0s
−1∂sk

in + cs−1∂θk
in, (49)

where L0 is the constant given in Theorem 2.2. This constant is closely related to the
function a2(s, θ). Indeed, in Lemma 4.4, we will see that:

a2(s, θ) = ã2(θ)

s
+ O(s−2),

and dL0 is the average of ã2(θ). Note that the function ξ0 defined as:

ξ0(s, θ) = θ + d−1αs + d−1(c + αL0) log s,

solves (49) up to terms of order s−2. Thus, the particular solution ξin that we will use
is ξin = ξ0 + ϕ where ϕ is a function that is “small” when |s| → ∞. This result is
contained in Proposition 4.6 of Sect. 4.2.

All these considerations lead to the following result.

Theorem 2.11 Consider the difference: �ψin = ψu
in − ψ s

in defined in ∈ Eβ0,κ̄ × Tω.
It can be written in the form

�ψin(s, θ) = P in(s, θ)k̃in(ξin(s, θ), θ)

where the function k̃in(τ ) is a 2π−periodic function, P in is a particular solution of the
PDE (46) and ξin is a solution of the homogeneous PDEEq. (47) such that (ξin(s, θ), θ)
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is injective in Eβ0,κ̄ × Tω. They are of the form

k̃in(τ ) =
∑

l<0

ϒ
[l]
in e

ilτ , P in(s, θ) = s2/d(1 + P in
1 (s, θ)),

ξin(s, θ) = θ + d−1αs + d−1(c + αL0) log s + ϕ(s, θ)

with ϒ
[l]
in , P

in
1 and ϕ satisfying that there exists M > 0 such that

∣∣∣ϒ [l]
in

∣∣∣ ≤ M and, for

(s, θ) ∈ Eβ0,κ̄ × Tω:

|ϕ(s, θ)|, |∂sϕ(s, θ)| ≤ M

|s| , |P in
1 (s, θ)| ≤ M

|s| , |∂s P in
1 (s, θ)| ≤ M

|s|2 . (50)

The proof of this theorem is given in Sect. 4.2. Let us note here that, as an straightfor-
ward consequence of this result:

�ψin(s, θ) = s2/d(1 + P in
1 (s, θ))

∑

l<0

ϒ
[l]
in e

ilξin(s,θ). (51)

Corollary 2.12 There exists a constant M such that, if θ ∈ S
1 and s ∈ Eβ0,κ̄ , then

|�ψin(s, θ)| , |∂s�ψin(s, θ)| ≤ M |s|2/deIm ξin(s,θ).

Proof We only need to note that Im ξin(s, θ) < 0 for (s, θ) ∈ Eβ0,κ̄ × S
1 if κ̄ is

sufficiently large. Then we use formula (51) that
∣∣∣ϒ [l]

in

∣∣∣ ≤ M and bounds (50) as well.
��

2.3 Study of the Matching Errors ψu
1 and ψ s

1

In this section, we shall show that the functions ψu
in and ψ s

in found in Theorem 2.10
approximate the functions ψu and ψ s defined in Theorem 2.7, in some complex
subdomains of Din,u

β0,κ̄
and Din,s

β0,κ̄
, respectively, which, when written in the (u, θ) vari-

ables, correspond to domains close to the singularity iπ/(2d). Let us first define these
domains. Recall that, if ∗ = u, s, ψ∗(s, θ) = δ2r∗

1 (u(s), θ) (see (27) for the definition
of the change u(s)) and that r∗

1 are defined in the domains D∗
κ,β,T × Tω (see (14) for

the definition of these domains), where κ satisfies condition (19) and β is some fixed
constant. Take β1, β2 two constants independent of δ and σ , such that:

0 < β1 < β < β2 < π/2.
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(a) (b)

Fig. 6 The domains Dmch,u
κ,β1,β2

and Dmch,s
κ,β1,β2

. a The domain Dmch,u
κ,β1,β2

. b The domain Dmch,s
κ,β1,β2

Fix also a constant γ ∈ (0, 1). We define the points u j ∈ C, j = 1, 2 to be those
satisfying (see Fig. 6):

Im u j = − tan β jRe u j + π

2d
− δκ, Re u1 < 0, Re u2 > 0

∣∣∣u j − i
( π

2d
− δκ

)∣∣∣ = δγ .
(52)

Then we define the following domain (see Fig. 6):

Dmch,u
κ,β1,β2

=
{
u ∈ C : Im u ≤ − tan β1Re u + π

2d
− δκ,

Im u ≤ − tan β2Re u + π

2d
− δκ,

Im u ≥ Im u1 − tan

(
β1 + β2

2

)
(Re u − Re u1)

}
.

Note that Dmch,u
κ,β1,β2

is a triangular domain, having its vertices at u1, u2 and i(π/(2d) −
δκ). We also define:

Dmch,s
κ,β1,β2

= {u ∈ C : −u ∈ Dmch,u
κ,β1,β2

}.

One can easily see that, taking κ̄ = κ/2, one has (see Figs. 4 and 6):

Dmch,u
κ,β1,β2

⊂ Du
κ,β,T ⊂ Din,u

β0,κ̄
, Dmch,s

κ,β1,β2
⊂ Ds

κ,β,T ⊂ Din,s
β0,κ̄

,

with Du
κ,β,T defined in (14), Ds

κ,β,T = −Du
κ,β,T and Din,u

β0,κ̄
and Din,s

β0,κ̄
were defined in

(41).
Finally, we define the following domains in terms of the inner variable s:

Dmch,∗
κ,β1,β2

= {s ∈ C : i
π

2d
+ δ

s

d
∈ Dmch,∗

κ,β1,β2
}, ∗ = u, s. (53)
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One also has that for κ̄ = κ/2 and taking δ sufficiently small:

Dmch,u
κ,β1,β2

⊂ Din,u
β0,κ̄

, Dmch,s
κ,β1,β2

⊂ Din,s
β0,κ̄

,

where Din,u
β0,κ̄

and Din,s
β0,κ̄

were defined in (40).
We will also denote:

s j = d

δ

(
u j − i

π

2d

)
, j = 1, 2, (54)

with u1, u2 defined in (52). It is clear that, there exist constants K1, K2 such that:

K1δ
γ−1 ≤ |s j | ≤ K2δ

γ−1, j = 1, 2, (55)

and that for all s ∈ Dmch,∗
κ,β1,β2

, ∗ = u, s, we have:

κd cosβ1 ≤ |s| ≤ K2δ
γ−1. (56)

Next goal is to see how well the functions ψ
u,s
in approximate ψu,s in the matching

domains Dmch,u,s
κ,β1,β2

× Tω. To that aim, we recall the definition of the matching error:

ψu
1 (s, θ) := ψu(s, θ) − ψu

in(s, θ), ψ s
1(s, θ) := ψ s(s, θ) − ψ s

in(s, θ). (57)

We stress that Theorems 2.7 and 2.10 yield directly the existence of ψ
u,s
1 . On the one

hand, ψu(s, θ) is defined for s ∈ Du
κ,β,T (see (31) for its definition) and ψu

in(s, θ) is

defined for s ∈ Din,u
β0,κ̄

(see (40)). Then, since

Dmch,u
κ,β1,β2

⊂ Du
κ,β,T ⊂ Din,u

β0,κ̄
,

one has that ψu
1 = ψu − ψu

in is defined in Dmch,u
κ,β1,β2

. On the other hand, Theorems 2.7
and 2.10 also provide us with a non-sharp upper bound for these functions of order
O(|s|−3). In the following result, we prove that, restricting ψu

1 and ψ s
1 to the smaller

domainsDmch,u
κ,β1,β2

andDmch,u
κ,β1,β2

, respectively, we can get better upper bounds for them.

Theorem 2.13 Let ψu
1 and ψ s

1 be defined in (57). There exists M > 0 such that:

|ψ∗
1 (s, θ)| ≤ Mδ1−γ |s|−2 s ∈ Dmch,∗

κ,β1,β2
∗ = u, s

The proof of this Theorem can be found in Sect. 5.
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2.4 An Asymptotic Formula for the Difference � = ru
1 − rs

1

We shall use the information obtained in the previous subsections to find an asymptotic
formula for� = ru1 −r s1 bymeans of the�ψin = ψu

in−ψ s
in. As we pointed out in (23),

�(u, θ) = cosh2/d(du)(1 + P1(u, θ))
∑

l∈Z
ϒ [l]eilξ(u,θ), (58)

with P1 and ξ the functions given in Theorem 2.2 and ϒ [l], the Fourier coefficients
of the function k̃(τ ), which are unknown. They depend on δ and σ . Recall that in the
general case, we assume that |σ | ≤ δσ∗.

We shall look for a first asymptotic order of � of the form:

�0(u, θ) = cosh2/d(du)(1 + P1(u, θ))

⎛

⎝ϒ [0] +
∑

l �=0

ϒ
[l]
0 eilξ(u,θ)

⎞

⎠ , (59)

for certainϒ
[l]
0 to be determined. Some remarks about the choice of�0 we have made:

• Westress thatϒ [0] is the same coefficient (depending on δ andσ ) appearing in (23).
From Theorem 2.4, we know that in the conservative case the coefficient ϒ [0] is
zero, while in the general case it can be made zero (or exponentially small) with
the right choice of the parameter σ as a function of δ (see expression (26)).

• Notice that by Lemma 2.3 the coefficientsϒ [l] are exponentially small with respect
to δ. This result hints that, disregarding the coefficient ϒ [0], the dominant term
of �(u, θ) is determined essentially by the coefficients ϒ [1] and ϒ [−1] in expres-
sion (58). Aswewill see after we choose the appropriateϒ

[l]
0 , the samewill happen

to �0 which will have the coefficients ϒ
[1]
0 and ϒ

[−1]
0 as dominant terms in (59).

However, just for technical reasons, we have preferred to include all the Fourier
coefficients in the asymptotic first order �0.

• It is proven in Lemma 2.3 that the coefficients ϒ [l] = O
(
δ−2−2/de− απ

2dδ

)
when

l �= 0. In fact they are smaller if |l| ≥ 2. For this reason, when l �= 0, we expect

ϒ
[l]
0 = O

(
δ−2−2/de− απ

2dδ

)
at least.

• We only need to deal with ϒ
[l]
0 with l < 0 and then define ϒ

[l]
0 = ϒ

[−l]
0 , for l > 0,

to make �0 a real analytic function.
• As we pointed out in item 3 in Sect. 2.1.3, to obtain exponentially small bounds
for �(u, θ) − �0(u, θ) for real values of u, we will need to evaluate our different
functions at u+ = i(π/(2d)−κδ). Roughly speaking, whatwe need is to guarantee
that, with the appropriate choice of ϒ

[l]
0 ,

�(u+, θ) − �0(u+, θ) = o (�0(u+, θ)) .

In what follows, we will give some heuristic ideas to explain how to choose the
coefficients ϒ

[l]
0 with l < 0. For that we assume that the function P1 ≡ 0 and that the
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function ξ in (20) is

ξ(u, θ) = θ + δ−1αu + d−1(c + αL0
)
log cosh(du) + L(u). (60)

That is the function χ ≡ 0.

Remark 2.14 We want to emphasize here that there is no attempt to be rigorous but
to give some intuition about why our choice of ϒ

[l]
0 could be the good one. Later, in

the proof of Proposition 2.15 in Sect. 3, we will see that the choice of ϒ
[l]
0 we shall

make provides indeed an asymptotic first order �0(u, θ) of the difference �(u, θ).

Note that u+ ∈ Dmch,u
κ,β1,β2

∩ Dmch,s
κ,β1,β2

. In this region, as a consequence of Theorem 2.13,
the functions ru1 and r

s
1 arewell approximated byψu

in andψ s
in, respectively, the solutions

of the inner equation, Eq. (39) given by Theorem 2.10. More precisely:

ru,s1 (u, θ) ≈ δ−2ψ
u,s
in (s(u), θ), u ∈ Dmch,u

κ,β1,β2
∩ Dmch,s

κ,β1,β2
,

where the change s(u) = 1/
[
δ tanh(du)

]
is defined in (27). Since�(u, θ) = ru1 (u, θ)−

r s1(u, θ), one expects that, for u ∈ Dmch,u
κ,β1,β2

∩ Dmch,s
κ,β1,β2

�(u, θ) ≈ �in(u, θ) := δ−2ψu
in(s(u), θ) − δ−2ψ s

in(s(u), θ). (61)

Now, by expression (51) of �ψin = ψu
in − ψ s

in we have:

�in(u, θ) = δ−2s2/d(u)
(
1 + P in

1 (s(u), θ)
)∑

l<0

ϒ
[l]
in e

ilξin(s(u),θ), (62)

where ϒ
[l]
in are constants independent of δ and σ and ξin is defined in Theorem 2.11.

In this heuristic approach, we make the same simplifications for �in as the ones for
�. That is, we will assume that P in

1 ≡ 0 and that

ξin(s(u), θ) = θ + d−1αs(u) + d−1(c + αL0) log

(
cosh(du)

δ sinh(du)

)
. (63)

A necessary condition to guarantee that approximation (61) holds true at u = u+ is:

δ−2s2/d(u+)ϒ
[l]
in e

ilξin(s(u+),θ) ≈ cosh2/d(du+)ϒ [l]eilξ(u+,θ), l < 0

or equivalently

ϒ [l] ≈ δ−2s2/d(u+) cosh−2/d(du+)ϒ
[l]
in e

il
(
ξin(s(u+),θ)−ξ(u+,θ)

)
, l < 0. (64)

Now we estimate the right-hand side of (64). First we notice that by Remark 2.6

s(u+) = −idκ + O(δ2κ3). (65)
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Moreover subtracting expressions (63) and (60) of ξin(s(u), θ) and ξ(u, θ), respec-
tively, evaluated at u = u+ and using (65) for s(u+), we have that

ξin(s(u+), θ) − ξ(u+, θ) = −i
απ

2dδ
− d−1(c + αL0) log(δ sinh(du+))

−αL(u+) + O(δ2κ3)

Secondly, we observe that, on the one hand,

cosh(du+) = dδκ + O(δ3κ3)

log sinh(du+) = log | sinh(du+)| + i
π

2
= i

π

2
+ O

(
δ2κ2

)
,

(66)

and on the other hand, by Theorem 2.2, the following limit is well defined:

L+ := lim
u→i π

2d

L(u). (67)

Therefore, since by (21) |L ′(u)| is bounded, from (64) and dismissing the high-order
terms:

ϒ [l] ≈ δ−2−2/d(−i)2/dϒ [l]
in e

d−1(c+αL0)(−il log δ+l π
2 )−ilαL+el

απ
2dδ , l < 0.

This concludes the heuristic approach and now we define:

ϒ
[l]
0 =: δ−2−2/d(−i)2/dϒ [l]

in e
d−1(c+αL0)(−il log δ+l π

2 )−ilαL+el
απ
2dδ , l < 0. (68)

Since �(u, θ) is real analytic, ϒ [l] = ϒ [−l]. Thus, we define:

ϒ
[l]
0 := ϒ

[−l]
0

= δ−2−2/di2/dϒ [−l]
in ed

−1(c+αL0)(−il log δ−l π
2 )−ilαL+e−l απ

2dδ l > 0.
(69)

Of course, to prove that�0 in (59) with the choice ofϒ
[l]
0 provided in (68) and (69)

is the first order of �, we need to see that: �1 := � − �0 is smaller than �0. To this
end, let us write

�1(u, θ) = cosh2/d(du)(1 + P1(u, θ))
∑

|l|≥1

(
ϒ [l] − ϒ

[l]
0

)
eilξ(u,θ). (70)

By Lemma 2.3 and formulae (68) and (69), it is clear that, generically, the terms
involving ϒ [l], ϒ [l]

0 with |l| ≥ 2 are smaller than �0 (observe that �0 contains the

largest terms ϒ
[±1]
0 ). The following result states that the terms ϒ [±1] −ϒ

[±1]
0 are also

small. Its proof can be found in Sect. 3.
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Proposition 2.15 Let κ = κ0 log(1/δ), with κ0 > 0 any constant such that 1 − γ >

ακ0. Letϒ
[±1]
0 be defined as (68) with l = −1 and (69) with l = 1, respectively. There

exists a constant M such that:

∣∣∣ϒ [±1] − ϒ
[±1]
0

∣∣∣ ≤ M

κ
δ−2− 2

d e− απ
2dδ ,

where we assume that, in the general case, |σ | ≤ δσ ∗. Recall that d = 1 in the
conservative case.

Using this result and formulae (68) and (69) of ϒ
[l]
0 , we can prove:

Theorem 2.16 Let 0 ≤ δ ≤ δ0. In the general case take |σ | ≤ δσ ∗. Let ϒ [0] =
ϒ [0](σ, δ) be the constant provided by Theorem 2.4. In the conservative case, recall
that ϒ [0] = 0. We introduce:

ϑ(u, δ) = δ−1αu + d−1(c + αL0)
[
log cosh(du) − log δ

]+ αL(u),

where L0 and L(u) are given in Theorem 2.2. Define the constant C∗ as:

C∗ = C∗
1 + iC∗

2 := 2(−i)
2
d ϒ

[−1]
in e−d−1(c+αL0)

π
2 +iαL+ .

where ϒ
[−1]
in appears in Theorem 2.11 and L+ is defined in (67). Then there exists

T0 > 0 such that for all u ∈ [−T0, T0] and θ ∈ S
1

�(u, θ) = cosh2/d(du)ϒ [0] (1 + O(δ))

+ δ−2− 2
d cosh2/d(du)e− απ

2dδ

[
C∗
1 cos

(
θ + ϑ(u, δ)

)

+ C∗
2 sin

(
θ + ϑ(u, δ)

)
+ O

(
1

log(1/δ)

)]
,

where, we recall that d = 1 in the conservative case.

Proof Let κ = κ0 log(1/δ), with κ0 > 0 any constant such that 1 − γ > ακ0. On
the one hand, using Lemma 2.3 to bound |ϒ [l]| for l ≥ 2, formulae (68) and (69)
for ϒ

[l]
0 , Proposition 2.15 to bound |ϒ [±1] − ϒ

[±1]
0 | and the fact that ξ(u, θ) ∈ R for

(u, θ) ∈ [−T0, T0]× S
1, it is easy to see, from expression (70) of �1 = �−�0, that

|�1(u, θ)| ≤ K cosh2/d(du)|1 + P1(u, θ)|δ
−2−2/d

κ
e− απ

2dδ .

Since, by bound (22) of P1, we have:

|P1(u, θ)| ≤ K δ

| cosh(du)| ≤ K δ, for u ∈ [−T0, T0] (71)
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and this yields (renaming K ):

|�1(u, θ)| ≤ K cosh2/d(du)
δ−2−2/d

log(1/δ)
e− απ

2dδ . (72)

On the other hand, by definition (59) of �0 and since ϒ
[l]
0 = ϒ

[−l]
0 ,

�0(u, θ) = cosh2/d(du)(1 + P1(u, θ))
[
ϒ [0] + 2Re

(
ϒ

[−1]
0 e−iξ(u,θ)

)
+ O

(
δ−2−2/de− απ

dδ

)]
,

where ϒ
[−1]
0 is given in (68) with l = −1, and ξ is defined in (20). Then one has:

ϒ
[−1]
0 e−iξ(u,θ) = δ−2− 2

d e− απ
2dδ

C∗

2
e−i(θ+ϑ(u,δ)+χ(u,θ)),

with:

C∗ = 2(−i)
2
d ϒ

[−1]
in e−d−1(c+αL0)

π
2 +iαL+ .

Using Theorem 2.2, one has that, if u ∈ [−T0, T0] then |χ(u, θ)| ≤ K δ, so that:

ϒ
[−1]
0 e−iξ(u,θ) = δ−2− 2

d e− απ
2dδ

C∗

2
e−i(θ+ϑ(u,δ))(1 + O(δ)).

Then, using also bound (71) and the fact that ϒ [1] = ϒ−[1], we obtain:

�0(u, θ) = cosh2/d(du)ϒ [0](1 + O(δ))

+ cosh2/d(du)δ−2− 2
d e− απ

2dδ

[
C∗
2
ei(θ+ϑ(u,δ)) + C∗

2
e−i(θ+ϑ(u,δ))

]

(1 + O(δ)).
(73)

Finally, we only have to note that:

C∗
2
ei(θ+ϑ(u,δ)) + C∗

2
e−i(θ+ϑ(u,δ))

= Re C∗ cos(θ + ϑ(u, δ)) + Im C∗ sin(θ + ϑ(u, δ)),

so that using bound (72) of �1, expression (73) of �0 and the fact that � = �0 + �1
we obtain the claim of the theorem. In the conservative case, we take into account that
d = 1 and ϒ [0] = 0 by Theorem 2.4. ��
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Fig. 7 The curve σ = σ 0∗ (δ)∗
and the wedge-shaped domain
W∗ around it. For values of μ, ν

inside this open domain, Xμ,ν

has two transversal heteroclinic
orbits while if μ, ν belongs to
{|ν| < β1

√
μ}\Wu,s there are

no heteroclinic intersections

Corollary 2.17 Take T0 > 0, and 0 ≤ δ ≤ δ0. Consider the curve σ 0∗ (δ) given in

Theorem 2.4. Take the constants a±
1 = ±

√
(C∗

1 )
2 + (C∗

2 )
2 > 0, a±

2 = −2 − 2/d and

a±
3 = α. Define σ±∗ (δ) as the curves in Theorem 2.4 corresponding to these constants.
Consider the wedge-shaped domain around σ 0∗ (δ) (see Fig. 7):

W∗ := {(δ, σ ) ∈ R
2 0 ≤ δ ≤ δ0 : σ−∗ (δ) < σ < σ+∗ (δ)}

in the parameter plane. Then, for (δ, σ ) ∈ W∗, and for fixed u ∈ [−T0, T0], the
function �∗(θ) = �(u, θ) is exponentially small and has two simple zeros which
give rise to two transversal heteroclinic orbits between the points S±(δ, σ ). Moreover,
for (δ, σ ) /∈ W∗, �∗(θ) has no zeros and therefore the two-dimensional stable and
unstable manifolds of S±(μ, ν) do not intersect.

Proof This corollary is an easy consequence of the implicit function theorem applied
to formula �(u, θ) = 0 given in Theorem 2.16 and using that, for (δ, σ ) ∈ W∗, one
has that

|ϒ [0]| ≤
√
C21 + C22 δ−2− 2

d e− απ
2dδ .

��
Remark 2.18 Theorem 2.16 and Corollary 2.17 yield straightforwardly Theorem 1.1
and Corollary 1.3.

The remaining part of this work is devoted to provide the proofs of the results in
this section. We present first, in Sect. 3, the proof related to the exponentially small
behavior of �(u, θ) in Proposition 2.15, assuming that all the previous results in
the present section hold true. After that we deal with the results related to the inner
equation in Sect. 4. Indeed, first, in Sect. 4.1, we deal with the existence and properties
of the solutions ψ

u,s
in of the inner equation and secondly, in Sect. 4.2, we prove the

asymptotic expression for the difference �ψin = ψu
in − ψ s

in stated in Theorem 2.11.
Then, in Sect. 5, we measure the matching errors ψ

u,s
1 (s, θ) for s belonging to the

matching domains s ∈ Dmch,u,s
κ,β1,β2

.
All the constants that appear in the statements of the following results might depend

on δ∗, δ0, σ ∗, κ∗ and κ0 but never on δ, σ and κ . We assume that δ∗, δ0 and σ ∗
are sufficiently small, and κ∗, κ0 are large enough satisfying condition (19). These
conventions are valid for all the sections of this work. As in the previousworkBaldomá
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et al. (2016), we shall skip the proofs that do not provide any interesting insight. For
these proofs, we refer the reader to Castejón (2015).

3 Exponentially Small Behavior: Proposition 2.15

This section is devoted to prove the asymptotics for ϒ [±1] given in Proposition 2.15.
To prove this result, we will assume all the results in Sects. 2.1, 2.2 and 2.3.

Wefirst beginwith a resultwhich relates the functions ξ(u, θ) and ξin(s(u), θ), given
in Theorems 2.2 and 2.11, respectively, when u is close to the singularity iπ/(2d).

Lemma 3.1 Let κ be sufficiently large, L+ the constant in (67), u+ = i
(

π
2d − δκ

)

and s(u) = [δZ0(u)]−1 the function defined in (27). There exist two functions �(θ)

and η(θ) and a constant M satisfying:

sup
θ∈S1

|�(θ)|, sup
θ∈S1

|η(θ)| ≤ M

κ
,

such that:

1. The function ξ(u, θ) in Theorem 2.2 satisfies

ξ(u+, θ) − θ = i
απ

2dδ
− iακ + d−1(c + αL0) log(δκd) + αL+ + �(θ).

2. The function ξin(s(u), θ), given in Theorem 2.11 is related to ξ(u, θ) by:

ξin(s(u+), θ) = ξ(u+, θ) − i
απ

2dδ

−d−1(c + αL0)
(
log δ + i

π

2

)
− αL+ + η(θ).

Proof By definition of ξ in (20) and recalling that u+ = i( π
2d − δκ),

ξ(u+, θ) − θ = i
απ

2dδ
− iακ + d−1(c + αL0) log(cosh(du+))

+αL(u+) + χ(u+, θ).

By Theorem 2.2, for all u ∈ Dκ,β , |L ′(u)| ≤ K and |χ(u, θ)| ≤ K δ| cosh(du)|−1.
Then, by definition (67) of L+ and using expression (66) of cosh(du+):

|L(u+) − L+| ≤ K δκ, |χ(u, θ)| ≤ K

κ
. (74)

The first item follows using again (66).
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Now we prove the second item. By using definition of ξin in Theorem 2.11 as well
as that s(u) = 1/[δ tanh(du)] one obtains

ξin(s(u), θ) − ξ(u, θ) = α
(
d−1s(u) − δ−1u

)− d−1(c + αL0) log(δ sinh(du))

− αL(u) + ϕ(s(u), θ) − χ(u, θ).
(75)

We evaluate (75) at u = u+. As we pointed out in (65) and (66):

d−1s(u+) − δ−1u+ = −i
απ

2dδ
+ O(δ2κ3), log(δ sinh(du)) = log δ + i

π

2
.

In addition, by Theorem 2.11 and using also expression (65) of s(u+), we have:

|ϕ (s(u+), θ) | ≤ K

|s(u+)| ≤ K

κ
.

Then, by (75) and using bounds in (74), we obtain readily:

ξin(s(u+), θ) = ξ(u+, θ) − i
απ

2dδ
− d−1(c + αL0)

(
log δ + i

π

2

)
− αL+ + η(θ),

with:

η(θ) = ϕ (s(u+), θ) + L(u+) − L+ − χ(u+, θ) + O
(
δ2κ3

)
.

Clearly, |η(θ)| ≤ K/κ for some constant K . ��
Proof of Proposition 2.15 Since �(u, θ), �0(u, θ) are real analytic, we just need to
prove the result for ϒ [−1] − ϒ

[−1]
0 .

Rewriting expression (70) of �1 = � − �0 one has

�1(u, θ)

cosh2/d(du)(1 + P1(u, θ))
=
∑

l �=0

(
ϒ [l] − ϒ

[l]
0

)
eilξ(u,θ), (76)

with ξ(u, θ) defined in (20). We introduce the function

F(u, θ) = δα−1(ξ(u, θ) − θ).

ByTheorem2.2, (ξ(u, θ), θ) is injective in Dκ,β×Tω then (F(u, θ), θ) is also injective
in the same domain. In particular, for all (u, θ) ∈ Dκ,β × S

1, the change (w, θ) =
(F(u, θ), θ) is a diffeomorphism between Dκ,β × S

1 and its image D̃κ,β × S
1, with

inverse (u, θ) = (G(w, θ), θ). Then, if we define the function:

E(w, θ) =
∑

|l|≥1

(
ϒ [l] − ϒ

[l]
0

)
eil(θ+δ−1αw),
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by (76), one has that:

E(w, θ) = �1(G(w, θ), θ)

cosh2/d(dG(w, θ))(1 + P1(G(w, θ), θ))
. (77)

Note that E(w, θ) is 2π−periodic in θ , and its Fourier coefficient E [−1](w) is:

E [−1](w) = (
ϒ [−1] − ϒ

[−1]
0

)
e−iδ−1αw.

Hence we know that for all w ∈ D̃κ,β :

∣∣∣ϒ [−1] − ϒ
[−1]
0

∣∣∣ = 1

2π

∣∣∣∣e
iδ−1αw

∫ 2π

0
E(w, θ)eiθdθ

∣∣∣∣

≤
∣
∣∣eiδ

−1αw
∣
∣∣ sup
θ∈S1

|E(w, θ)| .
(78)

For any θ0 ∈ S
1, we take w = w+ := F(u+, θ0) = δα−1(ξ(u+, θ0) − θ0) ∈ D̃κ,β

with u+ = i
(

π
2d − κδ

)
in (78). Then (78) yields:

∣∣
∣ϒ [−1] − ϒ

[−1]
0

∣∣
∣ ≤

∣∣
∣ei(ξ(u+,θ0)−θ0)

∣∣
∣ sup
θ∈S1

|E(w+, θ)| . (79)

Since (F(u, θ), θ) is the inverse of (G(w, θ), θ), from (77) we obtain:

E(w+, θ) = �1(u+, θ)

cosh2/d(du+)(1 + P1(u+, θ))
.

Thus, using bound (22) for P1, that | cosh(du+)| ≥ K δκ , and taking κ sufficiently
large, bound (79) writes out as:

∣
∣∣ϒ [−1] − ϒ

[−1]
0

∣
∣∣ ≤ K

δ
2
d κ

2
d

e−Im ξ(u+,θ0) sup
θ∈S1

|�1(u+, θ)| . (80)

By item 1 in Lemma 3.1 and since L0 ∈ R (see Theorem 2.2) we have:

Im ξ(u+, θ0) = απ

2dδ
− ακ + O(1) (81)

Therefore, since κ = κ0 log(1/δ), bound (80) writes out as:

∣∣∣ϒ [−1] − ϒ
[−1]
0

∣∣∣ ≤ K

δ
2
d+ακ0 log

2
d (1/δ)

e− απ
2dδ sup

θ∈S1
|�1(u+, θ)| . (82)

Now we claim that there exists a constant K such that for all θ ∈ S
1:

|�1(u+, θ)| ≤ K
δ−2+ακ0

κ1− 2
d

. (83)
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Clearly, using (83) in (82) and recalling that κ = κ0 log(1/δ) we obtain the claim of
the proposition (in the conservative case we just need to take d = 1). Hence, the rest
of the proof is devoted to prove bound (83).

To prove (83), we rewrite �1(u+, θ) = �(u+, θ) − �0(u+, θ) in the following
way:

�1(u+, θ) = �(u+, θ) − �in(u+, θ) + �in(u+, θ) − �0(u+, θ). (84)

First we bound �(u+, θ) − �in(u+, θ). We have:

�(u, θ) − �in(u, θ) = ru1 (u, θ) − r s1(u, θ) − δ−2 [ψu
in(s(u), θ) − ψ s

in(s(u), θ)
]

= δ−2 [ψu
1 (s(u), θ) − ψ s

1(s(u), θ)
]
,

where we have used that by definition ru,s1 (u, θ) = δ−2ψu,s(s(u), θ) and ψ
u,s
1 =

ψu,s − ψ
u,s
in . Thus, using that |ψu,s

1 (s, θ)| ≤ K δ1−γ |s|−2 by Theorem 2.13, it is clear
that:

|�(u+, θ) − �in(u+, θ)| ≤ K

|s(u+)|2 δ−1−γ ≤ K

κ2 δ−1−γ , (85)

where we have used that, by (65) |s(u+)| = dκ + O(δ2κ3).

Now we shall bound �in(u+, θ) − �0(u+, θ). Recall definition (59) of �0 and
expression (62) of �in:

�0(u, θ) = �
≥0
0 (u, θ) + �<0

0 (u, θ)

:= P(u, θ)

(

ϒ [0] +
∑

l>0

ϒ
[l]
0 eilξ(u,θ) +

∑

l<0

ϒ
[l]
0 eilξ(u,θ)

)

,

�in(u, θ) = δ−2Pin(s(u), θ)
∑

l<0

ϒ
[l]
in e

ilξin(s(u),θ)

with

P(u, θ) = cosh2/d(du)(1 + P1(u, θ)), Pin(s, θ) = s2/d(1 + P in
1 (s, θ)). (86)

We introduce the following notation:

F̂(u, θ) = δα−1
(
ξ(u, θ) − θ + d−1(c + αL0)

(
− log δ − i

π

2

)
− αL+

)
,

Fin(u, θ) = δα−1
(
ξin(s(u), θ) − θ + i

απ

2dδ

)
.

Then, by definition of (68) of ϒ
[l]
0 , if l < 0, one has that

ϒ
[l]
0 eilξ(u,θ) = (−i)2/d

δ2+2/d ϒ
[l]
in e

l απ
2dδ eil(θ+αδ−1 F̂(u,θ)), l < 0 (87)
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and

ϒ
[l]
in e

ilξin(s(u),θ) = ϒ
[l]
in e

l απ
2dδ eil(θ+αδ−1Fin(u,θ)), l < 0. (88)

Therefore, from (87) and (88), we can rewrite �<0
0 and �in as:

�<0
0 (u, θ) = (−i)2/dδ−2−2/dP(u, θ)

∑

l<0

ϒ
[l]
in e

l απ
2dδ eil(θ+αδ−1 F̂(u,θ)),

�in(u, θ) = δ−2Pin(s(u), θ)
∑

l<0

ϒ
[l]
in e

l απ
2dδ eil(θ+αδ−1Fin(u,θ)).

We will not bound |�<0
0 (u, θ) − �in(u, θ)| directly. First, we will study the differ-

ence |�<0
0 (u, θ) − �in( f (u, θ), θ)|, where the function f (u, θ) is defined through:

Fin( f (u, θ), θ) = F̂(u, θ). (89)

To see that f (u, θ) is well defined, we proceed as follows. Since (ξin(s, θ), θ) is
injective in Eβ0,κ̄ × Tω, one has that (Fin(u, θ), θ) is also invertible in s−1

(
Eβ0,κ̄

)×
Tω ⊂ Dκ,β × Tω, choosing κ̄ and κ adequately. Let (G in(w, θ), θ) be the inverse of
(Fin(u, θ), θ). Then the function

f (u, θ) = G in(F̂(u, θ), θ),

clearly satisfies Eq. (89). We emphasize that, by (87) and (88):

�in( f (u, θ), θ) = δ−2Pin(s( f (u, θ)), θ)
∑

l<0

ϒ
[l]
in e

l απ
2dδ eil(θ+αδ−1 F̂(u,θ))

= δ2/dPin(s( f (u, θ)), θ)

(−i)2/dP(u, θ)
�<0

0 (u, θ).

All these considerations yield to the following decomposition of �in − �0:

�in(u, θ) − �0(u, θ) = �in(u, θ) − �in( f (u, θ), θ) − �
≥0
0 (u, θ)

+ �in( f (u, θ), θ)

(
1 − (−i)2/dP(u, θ)

δ2/dPin(s( f (u, θ)), θ)

)
.
(90)

Now we proceed to bound each term in the above equality for u = u+. For that
we need a more precise knowledge about f (u+, θ) = G in(F̂(u+, θ), θ). First we
compute F̂(u+, θ) which, straightforwardly from Lemma 3.1, is:

F̂(u+, θ) = i
π

2d
− iδκ + O(δ log κ) = u+ + O(δ log κ).
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Now we deal with G in. By Remark 2.6 about s(u) and using definition of ξin(s, θ) in
Theorem 2.11

Fin(u, θ) = u + α−1δd−1(c + αL0) log(s(u))

+α−1δϕ(s(u), θ) + O
((
du − iπ/2

)3)
.

consequently, since by bound (50) of |ϕ(s, θ)| ≤ K |s|−1, we have that

Fin(u, θ) = u + δO(log(s(u))) + O
((
du − iπ/2

)3)
.

Therefore, the inverse (G in(w, θ), θ) of (Fin(u, θ), θ) also satisfies

G in(w, θ) = w + δO(log(s(w))) + O
((
dw − iπ/2

)3)
.

Recall that s(u+) ≈ −idκ (see (65)). It is clear from the above considerations that

| f (u+, θ) − u+| ≤ K δ log κ. (91)

In fact we have a sharper bound of | f (u+, θ) − u+|. Indeed, on the one hand, using
item 2 of Lemma 3.1

|F̂(u+, θ) − Fin(u+, θ)| = δ

α
|η(u+, θ)| ≤ K δκ−1

and on the other hand, using (91) and the mean value theorem as well, one has that

|Fin( f (u+, θ), θ) − Fin(u+, θ)| ≥ 1

2
| f (u+, θ) − u+|

if κ is sufficiently large. Therefore, since Fin( f (u, θ), θ) = F̂(u, θ):

| f (u+, θ) − u+| ≤ 2|F̂(u+, θ) − Fin(u+, θ)| ≤ Mδκ−1. (92)

Once we have bounded f (u+, θ) − u+ we bound �in(u+, θ) − �in( f (u+, θ), θ).
We claim that, for uλ = u+ + λ( f (u+, θ) − u+), λ ∈ [0, 1],

|∂u�in(uλ, θ)| ≤ K δ−3κ2/de−ακ . (93)

Indeed, by definition (61) of �in, using Corollary 2.12 and that ∂us(u) = −δ
s2(u)

cosh2(du)

one obtains:

|∂u�in(u, θ)| = δ−2 |∂s�ψin(s(u), θ)∂us(u)|

≤ K δ−1eIm ξin(s(u),θ) |s(u)|2+2/d

| cosh2(du)| .
(94)
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We have to control the terms in the above inequality when u = uλ. By (92), we
have that uλ = u+ +O(δκ−1). Therefore, by expressions (65) and (66) of s(u+) and
cosh(du+) one obtains:

|s(uλ)| = O(κ), | cosh(uλ)| = O(κδ).

Moreover,

|Im ξin(s(u), θ) − Im ξin(u+, θ)| ≤
∫ 1

0
|∂sIm ξin(s(uλ), θ)||∂us(uλ)| dλ ≤ K

κ
.

Then, by item 2 of Lemma 3.1 which relates ξin(s(u+), θ) with ξ(u+, θ) and expres-
sion (81) of Im ξ(u+, θ) one gets:

Im ξin(s(u+), θ) = −iακ − Im
[
d1−(c + αL0)

(
log δ + i

π

2

)]
+ O(1)

= −iακ + O(1),
(95)

where in the last equality we have used that L0 ∈ R (see Theorem 2.2). Bound (93)
follows from (94) and previous considerations.

By the mean value theorem and using bounds (93) and (92)

|�in(u+, θ) − �in( f (u+, θ), θ)| ≤ K
δ−2

κ1−2/d e
−ακ = K

δ−2+ακ0

κ1−2/d (96)

where we have used again that κ = κ0 log(1/δ).
Now we deal with �

≥0
0 , the second term in the decomposition (90) of �in − �0.

On the one hand, we recall that in the conservative case ϒ [0] = 0, and in the general
one we take σ = σ∗(δ), so that: |ϒ [0]| = |a1|δa2e− a3π

2dδ , for some a1, a2 ∈ R and
a3 > 0. On the other hand, from definition (69) of ϒ

[l]
0 and the expression of ξ(u+, θ)

in Lemma 3.1 one has that:
∣∣
∣ϒ [l]

0 eilξ(u+,θ)
∣∣
∣ ≤ K δ−2−2/de−l( απ

dδ −ακ−M)

for a certain constant (independent of κ) M . Hence, using definition (86) of P , that
| cosh(du+)| ≤ K δκ , bound (22) of P1 and that κ = κ0 log(1/δ), we obtain:

|�≥0
0 (u+, θ)| ≤ K (δκ)

2
d

(
|a1|δa2e− a3π

2dδ + δ−2−2/d−ακ0e− απ
dδ

)
, (97)

where we recall that a3 > 0.
We finally deal with the third term in (90). Using definitions (86) of P and Pin and

expressions (65) and (66) of s(u+) and cosh(du+) one readily obtains:

∣∣∣∣1 − (−i)2/dP(u, θ)

δ2/dPin(s( f (u, θ)), θ)

∣∣∣∣ ≤ K

κ
.
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In addition, by Corollary 2.12

|�in(u+, θ)| = δ−2|�ψin(s(u+), θ)| ≤ K |s(u+)|2/deIm ξin(s(u+)) ≤ K δ−2κ2/de−ακ ,

where in the last inequality we have used expression (95) of Im ξin(s(u+), θ). There-
fore, since κ = κ0 log(1/δ) and using also bound (96)

|�in( f (u+, θ), θ)|
∣∣∣∣1 − (−i)2/dP(u, θ)

δ2/dPin(s( f (u, θ)), θ)

∣∣∣∣ ≤ K
δ−2

κ1−2/d e
−ακ

= K
δ−2+ακ0

κ1−2/d .

(98)

In conclusion, using bounds (96), (97) and (98) in (90) we obtain:

|�in(u+, θ) − �0(u+, θ)| ≤ K
δ−2+ακ0

κ1− 2
d

.

Using this bound and bound (85) in (84), we obtain:

|�1(u+, θ)| ≤ K

κ2 δ−1−γ + K
δ−2+ακ0

κ1− 2
d

.

Then we just need to recall that 1−γ > ακ0 by hypothesis, so that δ−1−γ < δ−2+ακ0 ,
and we obtain bound (83). ��

4 The Inner Equation: Theorems 2.10 and 2.11

In this section, we present an exhaustive sketch of the proofs of Theorem 2.10, in Sect.
4.1 and Theorem 2.11 in Sect. 4.2. We refer to the interested reader to Castejón (2015)
where all the details are provided.

The inner equation was introduced in Sect. 2.2.1 in (38) as L(ψin) = M(ψin, 0).

4.1 Existence and Properties of ψ
u,s
in

In this section, we will prove Theorem 2.10. As we pointed out in Eq. (45), the
operators Gu,s defined in (44) are two right inverse of the linear operator L (see (35)
for its definition). Thus, the inner equation, Eq. (38) can be written as the following
fixed point equations:

ψ
u,s
in = M̃u,s(ψ

u,s
in ), (99)

where:

M̃u,s(φ) = Gu,s ◦ M(φ, 0), (100)
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and M is defined in (36). The proof of Theorem 2.10 relies on proving that both
operators, M̃u and M̃s, have a fixed point in a suitable Banach space.

In Sect. 4.1.1, we define such Banach spaces (for the u, s case, respectively) and
provide some technical properties of the operator Gu,s and the functions F̂ , Ĝ, Ĥ
(defined in (33)) and their derivatives that will be also used in Sects. 4.2.3 and 5.5.

4.1.1 Banach Spaces and Technical Lemmas

For φ : Din,u
β0,κ̄

× Tω → C, writing φ(s, θ) = ∑
l∈Z φ[l](s)eilθ , we define the norms:

‖φ[l]‖un := sup
s∈Din,u

β0,κ̄

|snφ(s)|, ‖φ‖un,ω :=
∑

l∈Z
‖φ[l]‖une|l|ω,

and the Banach space X u
n,ω:

X u
n,ω := {φ : Din,u

β0,κ̄
× Tω → C : φ is analytic, ‖φ‖un,ω < ∞}.

We also consider the following norm:

�φ�un,ω := ‖φ‖un,ω + ‖∂sφ‖un+1,ω + ‖∂θφ‖un+1,ω,

and the corresponding Banach space:

X̃ u
n,ω := {φ : Din,u

β0,κ̄
× Tω → C : φ is analytic, �φ�un,ω < ∞}.

For the stable case, we define analogous norms ‖.‖sn,ω and �.�sn,ω and Banach spaces

X s
n,ω and X̃ s

n,ω, just replacing the domain Din,u
β0,κ̄

by Din,s
β0,κ̄

.
The following result has Theorem 2.10 as an obvious corollary.

Proposition 4.1 Let β0 > 0 and κ̄ > 0 be large enough. Equation (99) has two
solutions ψu

in ∈ X̃ u
3,ω and ψ s

in ∈ X̃ s
3,ω and there exists M > 0 such that:

�ψ
u,s
in �u,s3,ω ≤ 2�M̃u,s(0)�u,s3,ω ≤ M, �ψ

u,s
in − M̃u,s(0)�u,s4,ω ≤ M.

The rest of the section is devoted to prove this proposition for the unstable case. The
proof for the stable one is completely analogous.

We present (see Castejón 2015 for their proofs) some technical results.

1. Banach spaces. Let n1, n2 ≥ 0. There exists M > 0 such that
(a) if n1 ≤ n2, then X u

n2,ω ⊂ X u
n1,ω and

‖φ‖un1,ω ≤ M

κ̄n2−n1
‖φ‖un2,ω.
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(b) If φ1 ∈ X u
n1,ω, φ2 ∈ X u

n2,ω, then φ1φ2 ∈ X u
n1+n2,ω and

‖φ1φ2‖un1+n2,ω ≤ M‖φ1‖un1,ω‖φ2‖un2,ω.

2. The operator Gu. Let n ≥ 1 and φ ∈ X u
n,ω. There exists a constant M such that:

‖Gu(φ)‖un−1,ω ≤ M‖φ‖un,ω, �Gu(φ)�un−1,ω ≤ M‖φ‖un,ω.

In addition, if φ[0](s) = 0, then ‖Gu(φ)‖un,ω ≤ M‖φ‖un,ω.

3. The nonlinear terms, F̂, Ĝ and Ĥ . Recall that these functions are defined in (33).
Let C be any constant. Then:
(a) If φ ∈ X u

3,ω with ‖φ‖u3,ω ≤ C , there exists M > 0 such that

‖F̂(φ, 0)‖u4,ω, ‖Ĝ(φ, 0)‖u2,ω, ‖Ĥ(φ, 0)‖u3,ω ≤ M.

(b) If φ ∈ X u
3,ω with ‖φ‖u3,ω ≤ C and κ̄ is sufficiently large, there exists M > 0

and:

‖Dφ F̂(φ, 0)‖u2,ω, ‖DφĜ(φ, 0)‖u0,ω, ‖Dφ Ĥ(φ, 0)‖u1,ω ≤ M.

(c) If φ1, φ2 ∈ X u
3,ω is such that ‖φi‖u3,ω ≤ C , for i = 1, 2, there exists M > 0

such that:

‖F̂(φ1, 0) − F̂(φ2, 0)‖u5,ω ≤ M‖φ1 − φ2‖u3,ω,

‖Ĝ(φ1, 0) − Ĝ(φ2, 0)‖u3,ω ≤ M‖φ1 − φ2‖u3,ω,

‖Ĥ(φ1, 0) − Ĥ(φ2, 0)‖u4,ω ≤ M‖φ1 − φ2‖u3,ω.

4.1.2 The Fixed Point Equation

Finally, we can proceed to prove the existence of a fixed point of the operator M̃u,
given in (100), in the Banach space X̃ u

3,ω. We first begin by studying the independent

term M̃u(0).

Lemma 4.2 LetMu be the operator defined in (100). There exists a constant M such
that: �M̃u(0)�u3,ω ≤ M.

Proof Noting that:

M(0, 0) = F̂(0, 0) + d + 1

b
s−1 Ĥ(0, 0),

by item 3a in Sect. 4.1.1 it is clear that ‖M(0, 0)‖u4,ω ≤ K for some constant K . Then,

since M̃u(0) = Gu ◦M(0, 0), one just needs to use item 2 in Sect. 4.1.1 to obtain the
claim of the lemma. ��
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The next step is to find a Lipschitz constant of the operator M̃u.

Lemma 4.3 Let φ1, φ2 ∈ X̃ u
3,ω such that �φi�

u
3,ω ≤ C, i = 1, 2, for some constant

C. Then, there exists a constant M such that:

�M̃u(φ1) − M̃u(φ2)�
u
4,ω ≤ M�φ1 − φ2�

u
3,ω.

Proof First we note that since Gu is linear:

M̃u(φ1) − M̃u(φ2) = Gu(M(φ1, 0) − M(φ2, 0)).

Hence, by item 2 in Sect. 4.1.1, we just need to prove:

‖M(φ1, 0) − M(φ2, 0)‖u5,ω ≤ K�φ1 − φ2�
u
3,ω. (101)

Now, by definition (36) of M, we decompose:

M(φ1, 0)−M(φ2, 0) = cs−1∂θ (φ1 − φ2) + F̂(φ1, 0) − F̂(φ2, 0)

+ d + 1

b
s−1

[
Ĥ(φ1, 0) − Ĥ(φ2, 0)

]
−
[
Ĝ(φ1, 0) − Ĝ(φ2, 0)

]
∂θφ1

− Ĝ(φ2, 0)∂θ (φ1 − φ2) + s2
[
2bφ2 + Ĥ(φ2, 0)

]
∂s(φ1 − φ2)

+ s2
[
2b(φ1 − φ2) + Ĥ(φ1, 0) − Ĥ(φ2, 0)

]
∂sφ1.

One just needs to use the properties in Sect. 4.1.1 exposed in item 1, 3a and 3c, and
take into account that:

‖φ1 − φ2‖u3,ω ≤ �φ1 − φ2�
u
3,ω, ‖∂θ (φ1 − φ2)‖u4,ω ≤ �φ1 − φ2�

u
3,ω,

‖∂s(φ1 − φ2)‖u4,ω ≤ �φ1 − φ2�
u
3,ω,

and then (101) is obtained easily. ��
End of the proof of Proposition 4.1 Let φ1, φ2 ∈ B(2�M̃u(0)�u3,ω) ⊂ X̃ u

3,ω. By
using item 1 in Sect. 4.1.1 and Lemma 4.3 we obtain:

�M̃u(φ1) − M̃u(φ2)�
u
3,ω ≤ K

κ̄
�M̃u(φ1) − M̃u(φ2)�

u
4,ω ≤ K

κ̄
�φ1 − φ2�

u
3,ω.

Hence, for κ̄ sufficiently large, Mu is contractive and:

M̃u : B(2�M̃u(0)�u3,ω) → B(2�M̃u(0)�u3,ω),

so that it has a unique fixed pointψu
in ∈ B(2�M̃u(0)�u3,ω). In other words,ψu

in satisfies

Eq. (99), and �ψu
in�

u
3,ω ≤ 2�M̃u(0)�u3,ω ≤ K by Lemma 4.2. To finish the proof,

using Lemma 4.3 again, we conclude:
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�ψu
in − M̃u(0)�u4,ω = �M̃u(ψu

in) − M̃u(0)�u4,ω ≤ K�ψu
in�

u
3,ω ≤ K .

��

4.2 The Difference �ψin

In this section, we provide the proof of Theorem 2.11 which deals with the form of
�ψin = ψu

in − ψ s
in. As in Sect. 4.1, we refer to the reader to Castejón (2015) for the

details.

4.2.1 Preliminary Considerations

As we explained in Sect. 2.2.3, since ψu
in and ψ s

in are solutions of the same equation,
Eq. (39), subtracting ψu

in and ψ s
in and using the mean value theorem, one obtains that

�ψin = ψu
in − ψ s

in satisfies Eq. (46):

−α∂θ�ψin + d∂s�ψin − 2s−1�ψin

= a1(s, θ)�ψin + a2(s, θ)∂s�ψin + (cs−1 + a3(s, θ))∂θ�ψin. (102)

Denoting ψλ = (ψu
in + ψ s

in)/2 + λ(ψu
in − ψ s

in)/2, the functions ai are:

a1(s, θ) = 1

2

∫ 1

−1
∂ψ F̂(ψλ, 0)dλ + d + 1

2b
s−1

∫ 1

−1
∂ψ Ĥ(ψλ, 0)dλ

−1

2

∫ 1

−1
∂ψ Ĝ(ψλ, 0)∂θψλdλ + bs2(∂sψ

u
in + ∂sψ

s
in)

+1

2
s2
∫ 1

−1
∂ψ Ĥ(ψλ, 0)∂sψλdλ, (103)

a2(s, θ) = bs2(ψu
in + ψ s

in) + 1

2
s2
∫ 1

−1
Ĥ(ψλ, 0)dλ (104)

a3(s, θ) = −1

2

∫ 1

−1
Ĝ(ψλ, 0)dλ. (105)

We recall that F̂ , Ĝ and Ĥ are defined in (33) and that the difference �ψin is defined
for s ∈ Eβ0,κ̄ = Din,u

β0,κ̄
∩ Din,s

β0,κ̄
(see Fig. 5) and θ ∈ Tω.

We already argued in Sect. 2.2.3 that �ψin can be written as:

�ψin(s, θ) = P in(s, θ)k̃in(ξin(s, θ), θ),

being k̃in(τ ) a 2π−periodic function, P in a particular solution of Eq. (102) and ξin is
a solution of the homogeneous PDE (47):

− α∂θk + d∂sk = a2(s, θ)∂sk + (cs−1 + a3(s, θ))∂θk (106)
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such that (ξin(s, θ), θ) is injective in Eβ0,κ̄ × Tω.
To take advantage of the perturbative setting, we look for P in and ξin of the form:

P in(s, θ) = s2/d(1 + P in
1 (s, θ)), (107)

ξin(s, θ) = θ + d−1αs + d−1(c + αL0) log s + ϕ(s, θ). (108)

It can be easily checked that P in
1 has to be a solution of:

−α∂θ P
in
1 + d∂s P

in
1 =(a1 + 2d−1s−1a2)(1 + P in

1 ) + a2∂s P
in
1

+ (cs−1 + a3)∂θ P
in
1

(109)

and, denoting,

ā2(s, θ) = a2(s, θ) − ds−1L0, (110)

ϕ has to be a solution of:

−α∂θϕ + d∂sϕ = d−1αā2 + d−1(c + αL0)s
−1a2 + a3 + a2∂sϕ

+ (cs−1 + a3)∂θϕ.
(111)

First, note that in the left-hand side of Eqs. (111) and (109) we have the same linear
operator, namely:

L̂(φ) = −α∂θφ + d∂sφ.

Moreover, ϕ and P in
1 are defined in the same domain Eβ0,κ̄ × Tω. Now, to solve Eq.

(111), we consider the operator:

A(φ) = d−1αā2(s, θ) + d−1(c + αL0)s
−1a2(s, θ) + a3(s, θ)

+ a2(s, θ)∂sφ + (cs−1 + a3(s, θ))∂θφ,

and to solve Eq. (109):

B(φ) = (a1(s, θ) + 2d−1s−1a2(s, θ))(1 + φ) + a2(s, θ)∂sφ

+ (cs−1 + a3(s, θ))∂θφ.
(112)

Then Eqs. (111) and (109) can be written, respectively, as:

L̂(ϕ) = A(ϕ), L̂(P in
1 ) = B(P in

1 ). (113)

Note that both equations in (113) can be rewritten as fixed point equations using a
suitable right inverse of the operator L̂.
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Let us denote s0 = −i κ̄ . Then we define the following right inverse of L̂, which
we shall denote by Ĝ, as the operator acting on functions φ given by:

Ĝ(φ)(s, θ) =
∑

l∈Z
Ĝ[l](φ)(s)eilθ ,

where:

Ĝ[l](φ)(s) =
∫ s

s0
e−ilα(w−s)φ[l](w)dw, if l > 0,

Ĝ[l](φ)(s) =
∫ s

−i∞
e−ilα(w−s)φ[l](w)dw, if l ≤ 0.

One can easily see that L ◦ Ĝ = Id.

4.2.2 Banach Spaces, Properties of a1, a2, a3 and of the Linear Operator Ĝ

Now we shall introduce the Banach spaces in which we will solve Equations (113).
These spaces and norms are basically the same as in Sect. 4.1.1, but we will work with
functions restricted to the domain Eβ0,κ̄ = Din,u

β0,κ̄
∩ Din,s

β0,κ̄
.

For φ : Eβ0,κ̄ ×Tω → C, writing φ(s, θ) = ∑
l∈Z φ[l](s)eilθ , we define the norms:

‖φ[l]‖n := sup
s∈Eβ0,κ̄

|snφ(s)|, ‖φ‖n,ω :=
∑

l∈Z
‖φ[l]‖ne|l|ω,

�φ�n,ω := ‖φ‖n,ω + ‖∂sφ‖n+1,ω + ‖∂θφ‖n+1,ω,

Then we define the Banach spaces:

Xω,n := {φ : Eβ0,κ̄ × Tω → C : φ is analytic, ‖φ‖n,ω < ∞},
X̃n,ω := {φ : Eβ0,κ̄ × Tω → C : φ is analytic, �φ�n,ω < ∞}.

These Banach spaces and norms satisfy the same properties stated in item 1 in
Sect. 4.1.1. We will use them without mentioning it explicitly.

Lemma 4.4 Consider the functions ai (s, θ), i = 1, 2, 3 defined, respectively, in (103),
(104) and (105), and the function ā2(s, θ) defined in (110). There exists a constant M
such that:

‖a1‖2,ω ≤ M, ‖a2‖1,ω ≤ M ‖ā[0]
2 ‖2 ≤ M, ‖a3‖2,ω ≤ M.

Proof Recalling that by Proposition 4.1 we have that ψu
in ∈ X̃ u

3,ω, using bounds of

F̂, Ĝ and Ĥ in Sect. 5.3, it is straightforward to prove the bounds for a1, a2 and a3.
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The bound for ā[0]
2 , the mean of ā2 is more involved. We will give an sketch of the

proof, the details are in Castejón (2015). Let us denote:

a0 = lim
s∈Eβ0,κ̄

|s|→∞
sa[0]

2 (s). (114)

From definition (104) of a2 and Theorem 2.10 (which gives some properties of the
functions ψu

in and ψ s
in) one obtains that, for all (s, θ) ∈ Eβ0,κ̄ × Tω,

a2(s, θ) = bs2
[Gu(M(0, 0))(s, θ) + Gs(M(0, 0))(s, θ)

]+ s2 Ĥ(0, 0) + O(s−2),

where Gu,s are defined in (44) andM in (36). From this expression, one can see that a0
is well defined. From definitions (33) of F̂ and Ĥ one checks that, for some constant
K :

|a[0]
2 (s) − s−1a0| ≤ K

|s|2 , (s, θ) ∈ Eβ0,κ̄ × Tω.

Since ā2(s, θ) = a2(s, θ) − ds−1L0, if we check that a0 = dL0 the bound for ā
[0]
2

will hold true. Now we state the definition of L0 introduced in Baldomá et al. (2016):

L0 = lim
u→i π

2d

lim
δ→0

δ−1l[0]2 (u) tanh−1(du),

being l[0]2 the mean of

l2(u, θ) = − b

d(1 − Z2
0(u))

(ru1 + r s1) − δ p

2d(1 − Z2
0(u))

∫ 1

−1
H(rλ)dλ, (115)

where H is defined in (15).
Let us consider u(s) = d−1arctanh(1/δs), as in (27). From definition (115) of

l2(u, θ) and (104) of a2(s, θ), recalling that:

ψu,s(s, θ) = δ2ru,s1 (u(s), θ),

the fact that ψu,s = ψ
u,s
in + ψ

u,s
1 , using the bounds provided in Theorems 2.7 and

2.13for ψu,s and ψ
u,s
1 , respectively, and using formula (33) (which relates H and

Ĥ ) one can see, after some straightforward but tedious computations, that for s ∈
Dmch,u

κ,β1,β2
∩ Dmch,s

κ,β1,β2
:

l2(u(s), θ) = d−1a2(s, θ) + O(δ1−γ ).

In particular, taking |s| ≤ K δ(γ−1)/2, s ∈ Dmch,u
κ,β1,β2

∩ Dmch,s
κ,β1,β2

, one has:

l2(u(s), θ) = d−1a2(s, θ) + O(s−2),
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so that:

l[0]2 (u(s)) = d−1a[0]
2 (s) + O(s−2).

Since |a[0]
2 (s) − s−1a0| ≤ K |s|−2, this yields:

l[0]2 (u(s)) = d−1a0s
−1 + O(s−2).

Taking s = 1/(δ tanh(du)) (with |u − iπ/(2d)| ≤ δ(1+γ )/2 so that |s| ≤ K δ(γ−1)/2)
we obtain:

l[0]2 (u) = δd−1a0 tanh(du) + O(δ2 tanh2(du)).

Thus:

L0 = lim
u→i π

2d

lim
δ→0

δ−1l[0]2 (u) tanh−1(du) = d−1a0, (116)

and the claim is proven. ��
Next lemma deals with the operator Ĝ and its Fourier coefficients.

Lemma 4.5 Let n ≥ 1 and φ ∈ X u
n,ω. There exists a constant M such that:

1. If l �= 0, ‖Ĝ[l](φ)‖n ≤ M

|l| ‖φ
[l]‖n. Moreover ‖∂θ Ĝ(φ)‖n,ω, ‖∂s Ĝ(φ)‖n,ω ≤

M‖φ‖n .
2. If n > 1, then ‖Ĝ[0](φ)‖n−1 ≤ M‖φ[0]‖n and ‖Ĝ(φ)‖n−1,ω ≤ M‖φ‖n,ω. In

addition, �Ĝ(φ)�n−1,ω ≤ M‖φ‖n,ω.

4.2.3 Existence and Properties of ϕ

Now we are going to prove the statements of Theorem 2.11 related to the existence
and properties of ϕ. Concretely we prove:

Proposition 4.6 Equation (113) has a solution ϕ which is 2π -periodic in θ and

‖ϕ‖1,ω ≤ M, ‖∂sϕ‖1,ω ≤ M, ‖∂θϕ‖1,ω ≤ M. (117)

In addition, (ξin(s, θ), θ), is injective in Eβ0,κ̄ × Tω, with ξin defined by (108).

Proof Bymeans of Ĝ, we rewrite the equation for ϕ in (113) as a fixed point equation:

ϕ = Ĝ ◦ A(ϕ) =: Ã(ϕ).

We will prove that Ã is a contraction in a certain ball. We first claim that

‖Ã(0)‖1,ω ≤ M, ‖∂θ Ã(0)‖1,ω ≤ M, ‖∂sÃ(0)‖1,ω ≤ M, (118)
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and hence �Ã(0)�0,ω ≤ M .

Remark 4.7 Note that, although we can bound Ã(0) using the norm ‖.‖1,ω, we have
to take the norm �.�0,ω since the bounds of the derivatives are with the norm ‖.‖1,ω
too.

Proof Indeed, by Lemma 4.4, it is straightforward to see that ‖A(0)‖1,ω ≤ K , which
in particular, implies that, for all l ∈ Z, ‖A[l](0)‖1 ≤ K . Therefore, using Lemma 4.5.

‖Ĝ[l](A(0))‖1 ≤ K

|l| ‖A
[l](0)‖1 ≤ K

|l| , l �= 0. (119)

Moreover, again using Lemma 4.4, for the zeroth Fourier coefficient, one has that
‖A[0](0)‖2 ≤ K which, using item 2 of Lemma 4.5, yields

‖Ĝ[0](A(0))‖1 ≤ K‖A[0](0)‖2 ≤ K . (120)

Since Ã = Ĝ ◦ A, bounds (119) and (120) imply that ‖Ã(0)‖1,ω ≤ K .
Finally using item 4 of Lemma 4.5 with bounds (119) we obtain that:

‖∂θ Ã(0)‖1,ω ≤ K , ‖∂sÃ(0)‖1,ω ≤ K .

Using the same tools, one can check that, ifφ1, φ2 ∈ X̃0,ω are such that�φi�0,ω ≤ C
for some constant C , then there exists a constant M such that:

�Ã(φ1) − Ã(φ2)�1,ω ≤ M�φ1 − φ2�0,ω. (121)

In particular �Ã(φ1) − Ã(φ2)�0,ω ≤ M κ̄−1�φ1 − φ2�0,ω.
Bounds (121) and (118) imply that, taking κ̄ is sufficiently large, the operator Ã

satisfies that Ã : B(2�Ã(0)�0,ω) → B(2�Ã(0)�0,ω), and it has a unique fixed point:

ϕ ∈ B(2�Ã(0)�0,ω) ⊂ X̃0,ω.

By construction, ϕ satisfies Eq. (111) and, as we pointed out in Sect. 4.2.1, ξin defined
as (108) satisfies Eq. (106).

By the definition of the norm �.�n,ω and since �ϕ�0,ω ≤ 2�Ã(0)�0,ω ≤ K by
bounds (118), one obtains the corresponding bounds for ∂sϕ and ∂θϕ in (117). We
point out that this fact does not imply (117) directly, but it can be used to prove this
bound a posteriori with the following argument. Indeed, since ϕ is the unique fixed
point of Ã, we can write:

ϕ = Ã(ϕ) = Ã(0) + Ã(ϕ) − Ã(0). (122)

On the one hand, by (118) we already know that ‖Ã(0)‖1,ω ≤ K . On the other hand,
�ϕ�0,ω ≤ 2�Ã(0)�0,ω ≤ K by (121), we have:

‖Ã(ϕ) − Ã(0)‖1,ω ≤ �Ã(ϕ) − Ã(0)�1,ω ≤ K�ϕ�0,ω ≤ K .
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Then, from (122) it is clear that �ϕ�1,ω ≤ K and (117) is proven.
Nowwe shall prove that (ξin(s, θ), θ), with ξin as in (108), is injective in Eβ0,κ̄ ×Tω.

We first note that if s1,s2 ∈ Eβ0,κ̄ , then sλ = s1 + λ(s2 − s1) ∈ Eβ0,κ̄ . Thus, |sλ| ≥ κ̄ .
Assume now that ξin(s1, θ) = ξin(s2, θ) for some s1, s2 ∈ Eβ0,κ̄ . By the mean value
theorem and the bounds for ϕ we have that

0 = |s1 − s2|
∣∣
∣∣d

−1α +
∫ 1

0

[
d−1(c + αL0)

sλ
+ ∂sϕ(sλ, θ)

]
dλ

∣∣
∣∣

≥ |s1 − s2|
(
d−1α − K

κ̄

)
.

Taking κ̄ is large enough one concludes that s1 = s2. ��

4.2.4 Existence and Properties of P in
1

As we did in the previous section with ϕ, we now prove the properties for P in
1 estab-

lished in Theorem 2.11 which we summarize below:

Proposition 4.8 Equation (113) has a 2π−periodic in θ solution, P in
1 , such that, for

some M > 0,

�P in
1 �1,ω ≤ M. (123)

Therefore, P in given by (107), satisfies that P in(s, θ) �= 0, for all (s, θ) ∈ Eβ0,κ̄ ×Tω.

Proof Similarly as in the previous subsection, we first rewrite equation the equation
for P in

1 in (113) as a fixed point equation:

P in
1 = Ĝ ◦ B(P in

1 ) := B̃(P in
1 ).

Again, we prove that the operator B̃ has a unique fixed point in a certain ball. We have
that, if φ1, φ2 ∈ X̃1,ω such that �φi�1,ω ≤ C for some constant C , then

�B̃(0)�1,ω ≤ M, �B̃(φ1) − B̃(φ2)�2,ω ≤ M�φ1 − φ2�1,ω

for some constant M > 0. We can prove this property using Lemma 4.5, defini-
tion (112) of B and Lemma 4.4. As a consequence,

�B̃(φ1) − B̃(φ2)�1,ω ≤ K

κ̄
�φ1 − φ2�1,ω

Therefore, if κ̄ sufficiently large, then B̃ : B(2�B̃(0)�1,ω) → B(2�B̃(0)�1,ω) and it
has a unique fixed point: P in

1 ∈ B(2�B̃(0)�1,ω) ⊂ X̃1,ω. Since P in
1 satisfies the fixed

point equation P in
1 = B̃(P in

1 ) it satisfies Eq. (113), and P in(s, θ) = s2/d(1+P in
1 (s, θ))

satisfies Eq. (102).
Bound (123) follows from the fact that, �P in

1 �1,ω ≤ 2�B̃(0)�1,ω ≤ K . ��
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4.2.5 End of the Proof of Theorem 2.11

We have that, for some periodic function k̃in

�ψin(s, θ) = s2/d(1 + P in
1 (s, θ))k̃in(ξin(s, θ)) (124)

with ξin of the form (108) and P in
1 given in Proposition 4.8.

It only remains to check that k̃in satisfies the properties stated in the theorem. Since
k̃in is 2π -periodic, we can write it in its Fourier series:

k̃in(τ ) =
∑

l∈Z
ϒ

[l]
in e

ilτ .

Now we note that by the definition of �ψin = ψu
in − ψ s

in and Theorem 2.10 we have
for all s ∈ Eβ0,κ̄ :

|�ψin(s, θ)| ≤ |ψu
in(s, θ)| + |ψu

in(s, θ)| ≤ K

|s|3 .

In particular:

lim
Im s→−∞ �ψin(s, θ) = 0.

Since �ψin(s, θ) is defined for Im s → −∞, expression (124) of �ψin implies that
k̃in is defined for Im τ → −∞. Moreover:

lim
Im τ→−∞ k̃in(τ ) = 0

and in particular |k̃in(τ )| ≤ M . This trivially implies that, on the one hand, ϒ [l]
in = 0

if l ≥ 0 and on the other hand, |ϒ [l]
in | ≤ M if l < 0.

The bounds for ϕ and P in
1 follow from the corresponding ones in Proposition 4.6

and Proposition 4.8, respectively.

5 The Matching Errors: Proof of Theorem 2.13

The main object of study of this section is the matching errors, defined in (57) as:

ψu
1 (s, θ) = ψu(s, θ) − ψu

in(s, θ), ψ s
1(s, θ) = ψ s(s, θ) − ψ s

in(s, θ), (125)

where ψu,s and ψ
u,s
in are given in Theorems 2.7 and 2.10, respectively.
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5.1 Banach Spaces

We present the Banach spaces we will work with, which are the same as in Sect. 4.1,
but using the domains Dmch,u,s

κ,β1,β2
(see (53)) instead. For completeness, we present the

exact definitions below. For φ : Dmch,u
κ,β1,β2

×Tω → C, with φ(s, θ) = ∑
l∈Z φ[l](s)eilθ ,

we define the norms:

‖φ‖un := sup
s∈Dmch,u

κ,β1,β2

|snφ(s)|, ‖φ‖un,ω :=
∑

l∈Z
‖φ[l]‖une|l|ω

�φ�un,ω := ‖φ‖un,ω + ‖∂sφ‖un+1,ω + ‖∂θφ‖un+1,ω,

and we endow the space of analytic functions with these norms:

X u
n,ω := {φ : Din,u

β0,κ̄
× Tω → C : φ is analytic, ‖φ‖un,ω < ∞},

X̃ u
n,ω := {φ : Din,u

β0,κ̄
× Tω → C : φ is analytic, �φ�un,ω < ∞}.

For the stable case, we define analog norms ‖.‖sn,ω and �.�sn,ω and Banach spacesX s
n,ω

and X̃ s
n,ω, just replacing the domain Dmch,u

κ,β1,β2
by Dmch,s

κ,β1,β2
.

We will prove the following proposition, which is equivalent to Theorem 2.13.

Proposition 5.1 Consider the functions ψ
u,s
1 (s, θ) defined in (125). Then, ψu

1 ∈ X̃ u
2,ω

and ψ s
1 ∈ X̃ s

2,ω. Moreover there exists a constant M such that:

�ψu
1�u2,ω ≤ Mδ1−γ , �ψ s

1�
s
2,ω ≤ Mδ1−γ .

The rest of this section is devoted to proving this result for the unstable case, but the
argument can be analogously done for the stable case.

5.2 Decomposition of ψu
1

Note that we already know the existence ofψu
1 = ψu−ψu

in by Theorems 2.7 and 2.10.
These theorems provide us with an a priori bound of the matching error ψu

1 . Indeed,
it is clear that

ψu
1 ∈ X̃ u

2,ω, �ψu
1�u2,ω ≤ Kκ−1 (126)

for some constant K . Our goal is to improve these bounds as stated in Proposition 5.1.
This strategy to bound the matching error was introduced in Baldomá et al. (2012).

Recall that ψu(s, θ) is defined for s ∈ Du
κ,β,T (see (31) for its definition) and

ψu
in(s, θ) is defined for s ∈ Din,u

β0,κ̄
(see (40)). Then, since

Dmch,u
κ,β1,β2

⊂ Du
κ,β,T ⊂ Din,u

β0,κ̄
,
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one has that ψu
1 is defined in Dmch,u

κ,β1,β2
. We also recall that ψu and ψu

in satisfy:

L(ψu) = M(ψu, δ), L(ψu
in) = M(ψu

in, 0),

respectively, where L is the linear operator defined in (35) and M is the operator
defined in (36). Defining the operator Mu

1 as:

Mu
1(ψ

u
1 ) = M(ψu

in + ψu
1 , δ) − M(ψu

in, 0), (127)

then ψu
1 satisfies:

L(ψu
1 ) = Mu

1(ψ
u
1 ). (128)

For convenience, we avoid writing explicitly the dependence ofMu
1 with respect to δ.

We recall thatψu
1 (s, θ) is 2π−periodic in θ . Next lemma characterizesψu

1 bymeans
of the initial conditions of its Fourier coefficients in appropriate values of s.

Lemma 5.2 Let s1 and s2 be the points defined in (54): s j = δ−1(u j − i π
2d ), for

j = 1, 2 (see Fig. 6 and (52) for the definition of u1, u2).
Then, the functionψu

1 = ψu −ψu
in defined in (125) is the unique function satisfying

Eq. (128) whose Fourier coefficients ψu
1

[l](s) satisfy:

ψu
1

[l](s1) = ψu[l](s1) − ψu
in

[l](s1) if l < 0,
ψu
1

[l](s2) = ψu[l](s2) − ψu
in

[l](s2) if l ≥ 0.
(129)

Proof Since ψu
1 is 2π−periodic in θ , it is uniquely determined by its Fourier coeffi-

cients. Writing Eq. (128) in terms of these Fourier coefficients, one easily obtains
that each Fourier coefficient ψu

1
[l] satisfies a given ODE. Moreover, solutions of

ODEs are uniquely determined by an initial condition at a given time. We choose
this initial time to be s = s1 for l < 0 and s = s2 for l ≥ 0. Since by definition
ψu
1

[l](s) = ψu[l](s) − ψu
in

[l](s), we obtain precisely (129). ��
The values ψu

1
[l](s1) and ψu

1
[l](s2) will be bounded later on using Theorem 2.7 and

Theorem 2.10. We will denote them by Cu
l :

Cu
l :=

{
ψu[l](s1) − ψu

in
[l](s1) if l < 0,

ψu[l](s2) − ψu
in

[l](s2) if l ≥ 0.
(130)

Recall that our ultimate goal is to find a sharp bound of ψu
1 (s, θ), for (s, θ) ∈

Dmch,u
κ,β1,β2

. To that aim we writeψu
1 as a function that satisfies (128) and (129) by means

of a solution of the homogeneous equation L(ψ) = 0 with initial conditions (129)
and a suitable solution of a fixed point equation. More precisely, we shall follow three
steps:

1. First, we construct a function �u that satisfies:
(a) L ◦ �u = 0,
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(b) �u[l](si ) = Cu
l , where we take i = 1 if l < 0 and i = 2 otherwise.

This can be trivially done, defining �u as the function:

�u(s, θ) =
∑

k∈Z
�u[l]

(s)eilθ , (131)

where:

�u[l](s) = Cu
l

s2/d1

s2/ded
−1α(s−s1)il if l < 0,

�u[l](s) = Cu
l

s2/d2

s2/ded
−1α(s−s2)il if l ≥ 0.

(132)

2. The second step consists in finding a right inverse Gu
0 of the operator L. We can

define it via its Fourier coefficients Gu
0
[l]. That is, given a function φ(s, θ) we

consider:

Gu
0 (φ)(s, θ) =

∑

k∈Z
Gu
0
[l]

(φ)(s)eilθ , (133)

and we choose Gu
0
[l] so that for all functions φ(s, θ) the following holds:

(c) Gu
0
[l](φ)(s1) = 0, if l < 0,

(d) Gu
0
[l](φ)(s2) = 0, if l ≥ 0.

One can easily see that if we define:

Gu
0
[l]

(φ)(s) = d−1s
2
d

∫ s

s1

e− ilα
d (w−s)

w
2
d

φ[l](w)dw if l < 0,

Gu
0
[l]

(φ)(s) = d−1s
2
d

∫ s

s2

e− ilα
d (w−s)

w
2
d

φ[l](w)dw if l ≥ 0,

then Gu
0 defined as in (133) satisfies conditions (c) and (d).

3. Now we point out that items (a)–(d) above imply that the function φ defined
implicitly by:

φ = �u + Gu
0 (Mu

1(φ)),

satisfies (128) and (129). Since by Lemma 5.2 ψu
1 is the only function satisfying

(128) and (129), we can write:

ψu
1 = �u + Gu

0 (Mu
1(ψ

u
1 )). (134)

We define the operator:

�Mu
1(φ) := Gu

0 (Mu
1(φ)) − Gu

0 (Mu
1(0)).
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Then we can rewrite (134) as:

(Id − �Mu
1)(ψ

u
1 ) = �u + Gu

0 (Mu
1(0)). (135)

Thus, we just need to see that the operator �Mu
1 has “small” norm in X̃ u

2,ω.
We point out that, unlike ψu

1 , we have an explicit formula for functions �u and
Gu
0 (Mu

1(0)), so that these functions can be bounded easily. Then (135) will allow
us to bound ψu

1 using bounds of the functions �u and Gu
0 (Mu

1(0)).

We shall proceed as follows. First we state several technical results about Gu
0 and

F̂, Ĝ and Ĥ whose proofs can be found in Castejón (2015). Next we summarize the
main properties of the operator Gu

0 . After that, we find bounds of �u and Gu
0 (Mu

1(0)).
This is done in Sect. 5.4. Finally, in Sect. 5.5, we study the operator �Mu

1 to see that
Id − �Mu

1 is invertible, which yields the proof of Proposition 5.1.

5.3 Preliminary Properties of Gu
0 , F̂, Ĝ and Ĥ

Even when we are not going to prove the following properties, let us just to point out
that, to prove them we have to take into account that for s ∈ Dmch,u

κ,β1,β2
one has:

K1κ ≤ |s| ≤ K2δ
γ−1 and δ < |s|−1. (136)

1. Banach spaces. The same properties given in item 1 in Sect. 4.1.1 hold true in this
case.

2. The operator Gu
0 . Again the same properties in item 2 of Sect. 4.1.1 are valid in

this case.
3. The nonlinear terms, F̂, Ĝ and Ĥ . The definition of these functions is given in (33).

Let C be any constant. Then:
(a) If φ ∈ X u

3,ω with ‖φ‖u3,ω ≤ C , then there exists M > 0 such that

‖F̂(φ, δ)‖u4,ω, ‖Ĝ(φ, δ)‖u2,ω, ‖Ĥ(φ, δ)‖u3,ω ≤ M

‖Dδ F̂(φ, δ)‖u3,ω, ‖DδĜ(φ, δ)‖u1,ω, ‖Dδ Ĥ(φ, δ)‖u2,ω ≤ M.
(137)

(b) If φ ∈ X u
2,ω with ‖φ‖u2,ω ≤ C/κ̄ and κ̄ is sufficiently large, there exists M > 0

and:

‖Dφ F̂(φ, δ)‖u2,ω, ‖DφĜ(φ, δ)‖u0,ω, ‖Dφ Ĥ(φ, δ)‖u1,ω ≤ M.

Note that, in definition (33) of F̂ , Ĝ and Ĥ , the variableφ always appears inside
the function ρ(φ, s, δ) defined in (32). The condition ‖φ‖u2,ω small ensures that
ρ(φ, s, δ) �= 0 which is needed to prove the actual item.
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(c) If φ ∈ X u
3,ω is such that ‖φ‖u3,ω ≤ C , there exists M > 0 such that:

‖F̂(φ, δ) − F̂(φ, 0)‖u3,ω ≤ Mδ, ‖Ĝ(φ, δ) − Ĝ(φ, 0)‖u1,ω ≤ Mδ,

‖Ĥ(φ, δ) − Ĥ(φ, 0)‖u2,ω ≤ Mδ.

5.4 The Functions �u and Gu
0 (Mu

1(0))

Along this section we use the previous properties of G0, F̂, Ĝ and Ĥ to give suitable
properties of�u andGu

0 (Mu
1(0)). Looking at equality (135) this is mandatory to obtain

sharp bounds of the matching error ψu
1 .

Lemma 5.3 The function �u defined in (131)–(132) satisfies �u ∈ X̃ u
2,ω. Moreover,

there exists a constant M such that: ��u�u2,ω ≤ Mδ1−γ .

Proof Let us recall definition (132) of the Fourier coefficients �u[l]:

�u[l]
(s) = Cu

l

s2/dj

s2/ded
−1α(s−s j )il , (138)

where j = 1 if l < 0 and j = 2 if l ≥ 0. From definition (130) of Cu
l and using

Theorems 2.7 and 2.10, it is clear that:

|Cu
l | ≤

(
‖ψu[l]‖u3 + ‖ψu

in
[l]‖u3

)
|s j |−3. (139)

Moreover, since Im (s − s j )l > 0, we have |ed−1α(s−s j )il | < 1. Then:

∣
∣∣�u[l]

(s)s2
∣
∣∣ ≤ |s j |−3−2/d|s|2+2/d

(
‖ψu[l]‖u3 + ‖ψu

in
[l]‖u3

)
.

As we pointed out in (55) and (56), |s j | ≥ K1δ
γ−1 and |s| ≤ K2δ

γ−1 for all s ∈
Dmch,u

κ,β1,β2
, thus

∣∣
∣�u[l]

(s)s2
∣∣
∣ ≤ K |s j |−1

(
‖ψu[l]‖u3 + ‖ψu

in
[l]‖u3

)
.

Wenowuse the definition of the norm‖.‖u3,ω, that byTheorems2.7 and2.10,‖ψu‖u3,ω+
‖ψu

in‖u3,ω ≤ K and that |s j | ≥ K1δ
γ−1, to conclude that

‖�u‖u2,ω ≤ K δ1−γ . (140)

Now we proceed to bound ‖∂θ�
u‖3,ω. We note that, if φ(s, θ) is a 2π -periodic

function with Fourier coefficients φ[l](s) the Fourier coefficients of ∂θφ(s, θ) are
ilφ[l](s). Using this and definition (130) of Cu

l we have that

|ilCu
l | ≤

(
‖ (∂θψ

u)[l] ‖u4 + ‖ (∂θψ
u
in

)[l] ‖u4
)

|s j |−4, (141)
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Then, reasoning analogously as in the previous case we reach that:

‖∂θ�
u‖u3,ω ≤K δ1−γ

(‖∂θψ
u‖u4,ω + ‖∂θψ

u
in‖u4,ω

) ≤ K δ1−γ . (142)

Finally, we bound ‖∂s�u‖3,ω. Differentiating the Fourier coefficients of �u[l]
defined in (138) with respect to s we obtain:

d

ds
�u[l]

(s) = 2Cu
l

ds2/dj

s2/d−1ed
−1α(s−s j )il + Cu

l

s2/dj

s2/dd−1αiled
−1α(s−s j )il .

Using bounds (139) and (141) of Cu
l and ilCu

l , respectively, we obtain:

‖∂s�u‖u3,ω ≤ K δ1−γ
(‖∂sψ‖u4,ω + ‖ψu

in‖u4,ω
) ≤ K δ1−γ . (143)

Bounds (140), (142) and (143) yield directly the claim of the lemma. ��
Lemma 5.4 Let σ = O(δ). Then the function Gu

0 (Mu
1(0)) ∈ X̃ u

2,ω, where Mu
1 is

defined in (127) and Gu
0 is defined in (133). Moreover, there exists a constant M such

that:

�Gu
0 (Mu

1(0))�
u
2,ω ≤ Mδ.

Proof By item 2 in Sect. 5.3, it is enough to prove that:

‖Mu
1(0)‖u3,ω ≤ K δ. (144)

Recall that Mu
1(0) = M(ψu

in, δ) − M(ψu
in, 0). Thus, from definition (36) of M we

obtain:

Mu
1(0) = dδ2s2∂sψ

u
in + 2σ

d + 1

2b

((
δ3 − δ

s2

)
+ δψu

in

)

+ F̂(ψu
in, δ) − F̂(ψu

in, 0) + d + 1

b
s−1

(
Ĥ(ψu

in, δ) − Ĥ(ψu
in, 0)

)

−
(
Ĝ(ψu

in, δ) − Ĝ(ψu
in, 0)

)
∂θψ

u
in + s2

(
Ĥ(ψu

in, δ) − Ĥ(ψu
in, 0)

)
∂sψ

u
in.

Now, using that for s ∈ Dmch,u
κ,β1,β2

(see (136)): K1κ ≤ |s| ≤ K2δ
γ−1, and the fact that

�ψu
in�

u
3,ω ≤ K , it is easy to check that:

∥
∥∥δ2s2∂sψu

in

∥
∥∥
u

3,ω
≤ K δ1+γ ,

and since σ = O(δ):

∥
∥∥∥2σ

d + 1

2b

((
δ3 − δ

s2

)
+ δψu

in

)∥∥∥∥

u

3,ω
≤ K δ1+γ .
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These facts and bound (137) of Dδ F̂, DδĜ and Dδ Ĥ , jointly with the properties of
the norm ‖.‖un,ω, yield directly bound (144). ��

5.5 The Operator �Mu
1

In this subsection, we are going to prove that the operator Id − �Mu
1 is invertible in

the Banach space X̃ u
2,ω. After that we will end the proof of Proposition 5.1.

Lemma 5.5 Let σ = O(δ) and C > 0. For any φ ∈ X̃ u
2,ω satisfying �φ�u2,ω ≤ C/κ ,

we have that �Mu
1(φ) ∈ X̃ u

2,ω. Moreover there exists M > 0 such that:

��Mu
1(φ)�u2,ω ≤ M

κ
�φ�u2,ω.

Proof Recall that

�Mu
1(φ) = Gu

0 (Mu
1(φ)) − Gu

0 (Mu
1(0)) = Gu

0 (Mu
1(φ) − Mu

1(0)).

Thus, by item 2 in Sect. 5.3, it is sufficient to prove that:

‖Mu
1(φ) − Mu

1(0)‖u3,ω ≤ K

κ
�φ�u2,ω. (145)

By definition (127) ofMu
1, one has:

Mu
1(φ) − Mu

1(0) = M(ψu
in + φ, δ) − M(ψu

in, δ).

Using definition (36) of M, one obtains:

Mu
1(φ) − Mu

1(0) = cs−1∂θφ + dδ2s2∂sφ + 2σδφ + F̂(ψu
in + φ, δ) − F̂(ψu

in, s, δ)

+ d + 1

b
s−1

(
Ĥ(ψu

in + φ, s, δ) − Ĥ(ψu
in, s, δ)

)

−
(
Ĝ(ψu

in + φ, δ) − Ĝ(ψu
in, δ)

)
∂θ (ψ

u
in + φ)

− Ĝ(ψu
in, δ)∂θφ + s2

(
2bψu

in + Ĥ(ψu
in, δ)

)
∂sφ

+ s2
(
2bφ + Ĥ(ψu

in + φ, δ) − Ĥ(ψu
in, δ)

)
∂s(ψ

u
in + φ).

Let us denote:

R(φ) := Mu
1(φ) − Mu

1(0) − dδ2s2∂sφ − 2bs2φ∂sφ.
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Using properties in Sect. 5.3, that �ψu
in�

u
3,ω ≤ K and that δ ≤ K |s|−1 for s ∈ Dmch,u

κ,β1,β2
,

one obtains that ‖R(φ)‖u4,ω ≤ K�φ�u2,ω. Then,

‖R(φ)‖u3,ω ≤ K

κ
‖R(φ)‖u4,ω ≤ K

κ
�φ�u2,ω. (146)

Now we just need to note that since |s| ≤ K δγ−1:

‖dδ2s2∂sφ‖u3,ω ≤ K δ2γ �φ�u2,ω. (147)

Finally, since by assumption �φ�u2,ω ≤ C/κ , then:

‖2bs2φ∂sφ‖u3,ω ≤ K
(
�φ�u2,ω

)2 ≤ K

κ
�φ�u2,ω. (148)

Bounds (146), (147) and (148) yield (145), and so the proof is finished. ��

End of the proof of Proposition 5.1 By Lemmas 5.3 and 5.4, we have that:

��u + Gu
0 (Mu

1(0))�
u
2,ω ≤ ‖�u‖u2,ω + ‖Gu

0 (Mu
1(0))‖u2,ω ≤ K

(
δ1−γ + δ

) ≤ K δ1−γ .

In addition, using equation (135), we have that

�ψu
1�u2,ω − ��Mu

1(ψ
u
1 )�u2,ω ≤ K δ1−γ .

Then, since, �ψu
1�u2,ω ≤ Kκ−1, as we pointed out in (126), one obtains by applying

Lemma 5.5:

�ψu
1�u2,ω(1 − Kκ−1) ≤ K δ1−γ

so that Proposition 5.1 is proven. ��

Remark 5.6 Notice that �Mu
1(ψ

u
1 ) can be expressed as B(s)ψu

1 , that is a linear
operator. Since �ψu

1�u2,ω ≤ Kκ−1, B(s) has norm strictly less than 1 so that
the linear operator Id − B(s) is invertible and then we can express ψu

1 as ψu
1 =

(
Id − B(s)

)−1
�u + Gu

0 (Mu
1(0)).
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6 Proof of Proposition 1.4

To prove this result we consider system (5) substituting f, g, h by ε f, εg, εh. That is:
we consider now the system

dx

dt
= x (σ − dz) +

(
α(δ2, δσ )

δ
+ cz

)
y + εδ−2 f (δx, δy, δz, δ, δσ ),

dy

dt
= −

(
α(δ2, δσ )

δ
+ cz

)
x + y (σ − dz) + εδ−2g(δx, δy, δz, δ, δσ ),

dz

dt
= −1 + b(x2 + y2) + z2 + εδ−2h(δx, δy, δz, δ, δσ ).

(149)

We emphasize that for ε = 1, it corresponds to our system (5). We take r > 1 and the
complex disk, D = {ε ∈ C : |ε| < r}. We will consider ε ∈ D.

Notice that, the corresponding functions F̂, Ĝ and Ĥ , defined in (33), to sys-
tem (149) are now

F̂ε(ψ, δ) = ε F̂(ψ, δ), Ĝε(ψ, δ) = εĜ(ψ, δ), Ĥε(ψ, δ) = εĤ(ψ, δ),

Therefore, the operator M(ψ, 0) in (36) is:

Mε(ψ, 0) =cs−1∂θψ + ε F̂(ψ, 0) + d + 1

b
s−1εĤ(ψ, 0)

− εĜ(ψ, 0)∂θψ + s2
(
2bψ + εĤ(ψ, 0)

)
∂sψ.

Then the inner equation in (38) is:

L(ψin) = Mε(ψin, 0) (150)

where we recall that the linear operator L was defined in (35).
We apply the results in Sect. 4 to Eq. (150). However we need to add the analytic

dependence on the parameter ε. Indeed, for φ : Din,u,s
β0,κ̄

× Tω × D → C, writing

φ(s, θ, ε) = ∑
l∈Z φ[l](s, ε)eilθ , we define the norms:

‖φ[l]‖u,sn := sup
(s,ε)∈Din,u,s

β0,κ̄ ×D

|snφ(s, ε)|, ‖φ‖u,sn,ω :=
∑

l∈Z
‖φ[l]‖u,sn e|l|ω,

and

�φ�u,sn,ω := ‖φ‖u,sn,ω + ‖∂sφ‖u,sn+1,ω + ‖∂θφ‖u,sn+1,ω.

The spaces X̃ u,s
n,ω

X̃ u
n,ω := {φ : Din,u

β0,κ̄
× Tω × D → C : φ is analytic, �φ�un,ω < ∞}
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are Banach space.
Proposition 4.1 applied to the (parametric) inner equation, Eq. (150) provide us

with two solutions ψ
u,s
in,ε ∈ X̃ u,s

3,ω, depending analytically on ε satisfying that

�ψ
u,s
in,ε�

u,s
3,ω ≤ 2�M̃u,s

ε (0)�u,s3,ω (151)

with

M̃u,s
ε (φ) = Gu,s ◦ Mε(φ, 0),

and Gu defined in (44), independent of ε. Analogously for Gs.
On the one hand, for ε = 0, using that M0(0, 0) = 0 we conclude by (151) that

ψ
u,s
in,0 = 0. On the other hand, by the analytic dependence on ε, ψu,s

in,ε = O(ε). Then
we have that �ψin,ε = ψu

in,ε − ψ s
in,ε = O(ε). Now we write expression (51) of the

difference �ψin,ε:

�ψin,ε(s, θ) = s2/d
(
1 + P in

1 (s, θ, ε)
)∑

l<0

ϒ
[l]
in (ε)eilξin(s,θ,ε).

Since �ψin,ε = O(ε), we have that ϒ [l]
in (ε) = O(ε) and we conclude by definition of

C∗(ε) in Theorem 2.16, that C∗(ε) = εĈ + O(ε2).
The formula for �(u, θ) in Theorem 2.16 also involves the function ϑ(u, μ) and

the constant L0, which is an analytic function of ε. We note that L0(ε) = ε L̂0 +
O(ε2). Indeed, one possibility to check this property is the definition of L0 provided
in Remark 5.7 in Baldomá et al. (2016) in terms of the Taylor expansion of ε f, εg, εh.
However we can also deduce this property by means of the equality (116). Indeed, first
one checks that function a2 in (104) also satisfies a2 = O(ε). Then, by definition (114)
of a0 we also have that this constant is O(ε). Finally, by (116), L0 = d−1a0.

We compare the result for �(u, θ) in Theorem 2.16 obtained for ε = δ p+2 with
p > −2 with the one in Theorem 2.14 in Baldomá et al. (2016). It is enough for our
purpose to take u = 0. We have that, by Theorem 2.14 in Baldomá et al. (2016)

�(0, θ) = e− 2π
2dδ δ−2− 2

d

(
δ p+2C1 cos(θ − cd−1 log δ) + δ p+2C2 sin(θ − cd−1 log δ)

+O(δ p+2| log δ|−1)
)

and by Theorem 2.16

�(0, θ) = e− 2π
2dδ δ−2− 2

d

(
δ p+2Ĉ1 cos(θ − cd−1 log δ) + δ p+2Ĉ2 sin(θ − cd−1 log δ)

+O(| log δ|)) .

Therefore, we deduce that Ĉ1 = C1 and Ĉ2 = C2. In addition, the error term in the
second formula has to beO(δ p+2| log δ|).We notice that, since for ε = 0,�(u, θ) = 0
this fact was also known.
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Summarizing we have proven that C∗(ε) = C∗
1 (ε) + iC∗

2 (ε) is an analytic function
defined on D such that C∗(ε) = εĈ + O(ε2) with Ĉ = C̄ = C1 + iC2 being the
constants in Theorem 2.14 in Baldomá et al. (2016). The constant C was introduced
in Theorem 2.5 in Baldomá et al. (2016) in terms of the first Fourier coefficient of the
Borel transform of a function m. Namely C = C1 − iC2 = 4π

d m̂[1] (α
d

)
, C1, C2 ∈ R,

with m̂(ζ, θ) be the Borel transform of m and m̂[1] its first Fourier coefficient.
Now we are going to prove that the set of the singularities HZ∗ having C∗ �= 0 is

i) dense and ii) open with the supremum norm. As we pointed out in Remark 2.9, the
constant C∗ only depends on the singularity and the same happens for C as we pointed
out in Baldomá et al. (2016). We also recall that, C �= 0 generically.

i) If C �= 0, being ε−1C∗(ε) = Ĉ + O(ε) = C̄ + O(ε) an analytic function, it has
isolated zeros. This implies that, either C∗(1) �= 0 or C∗(ε0) �= 0 with ε0 ∈ R as
close as we want to 1. So we are done in this case
When C = 0, for any ρ > 0 small enough there exist H̃ Z

∗
such that ‖̃HZ

∗ −
HZ∗‖∞ ≤ ρ and the constant C̃ associated to H̃ Z

∗
is different from zero. Then,

we apply the previous case and the result follows also in this case.
ii) If the Stokes constant C∗ �= 0 for some singularity HZ∗. Then, since C∗ depends

on the coefficients of HZ∗ analytically, C∗ will be nonzero for close enough
singularities.

This ends the proof of Proposition 1.4.
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